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ABSTRACT

Software systems may contain critical program components such as

patented program logic or sensitive data. When those components

are reverse-engineered by adversaries, it can cause significantly

damage (e.g., financial loss or operational failures).While protecting

critical program components (e.g., code or data) in software sys-

tems is of utmost importance, existing approaches, unfortunately,

have two major weaknesses: (1) they can be reverse-engineered via

various program analysis techniques and (2) when an adversary

obtains a legitimate-looking critical program component, he or she

can be sure that it is genuine.

In this paper, we propose Ambitr, a novel technique that hides

critical program components. The core of Ambitr is Ambiguous

Translator that can generate the critical program components when

the input is a correct secret key. The translator is ambiguous as it

can accept any inputs and produces a number of legitimate-looking

outputs, making it difficult to know whether an input is correct

secret key or not. The executions of the translator when it processes

the correct secret key and other inputs are also indistinguishable,

making the analysis inconclusive. Our evaluation results show that

static, dynamic and symbolic analysis techniques fail to identify the

hidden information in Ambitr. We also demonstrate that manual

analysis of Ambitr is extremely challenging.

CCS CONCEPTS

• Security and privacy→ Software security engineering; Soft-

ware reverse engineering.

KEYWORDS

program translation, software protection, reverse engineering

1 INTRODUCTION

Software systems often contain critical program components such

as classified, sensitive, or proprietary code or data, which we call
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Critical Program Components (or CPC). For example, patented pro-

gram logic is an example of CPC. If an adversary steals or copies a

competitor’s software system’s patented technology, it would cause

significant financial loss. Similarly, in a warfare software system

(e.g., software in a drone), a CPC can be a piece of code containing

its operational procedures, including the targets and plans. Since

an adversary can reverse-engineer a software system to reveal var-

ious critical operational secrets (e.g., targets of the military system

and target operation date) which can be used against the victim,

protecting CPCs is an essential requirement.

There are a few techniques that can be leveraged to hide critical

program components: obfuscation [5, 12, 37, 61], packing [14, 38,

40], and encryption [66, 75]. Code obfuscation techniques syntacti-

cally transform the original program’s code into another form of

code, making it difficult to be analyzed manually. Data obfuscation

techniques [3, 18, 30] change the value of data in a way that does not

change the original semantic of the data while making it difficult to

know the original value. However, both obfuscation techniques pre-

serve critical semantics, meaning that they only delay the analysis

but cannot protect the critical components. A packer compresses

or encrypts the program code and data, and stores them in a data

section of the packer’s loader program. However, it is not suitable

for hiding CPCs because it always decompresses (or decrypts) the

original program code and data at runtime.

To understand the effectiveness of the existing techniques in hid-

ing critical program components, we analyze approaches that can be

used against the obfuscation, packing, and encryption techniques.

Specifically, we observe that obfuscation techniques and packers

can be easily traced and analyzed by dynamic analysis [9, 41, 68].

While encryption-based techniques are challenging to break crypto-

graphically, the execution of the decryption function can be traced

to extract the decrypted data (i.e., the genuine critical program

components). To this end, we conclude that while the techniques

certainly raise the bar in analysis (i.e., making the analysis chal-

lenging), it is practically feasible for a persistent and determined

adversary to obtain the critical program component protected by

existing techniques. More importantly, since there is no ambiguity

in decoding and uncompression processes, the adversary knows

that the CPC is undoubtedly correct when obtained.

In this paper, we propose a novel technique, Ambitr, that aims to

hide critical program components against adversaries with access
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to the target program. Specifically, we hide critical program com-

ponents (e.g., program code or data) by encoding the components

to a complex state-machine. Given a correct secret key, the state-

machine generates the genuine critical program components (e.g.,

program code or data). The key difference between Ambitr and

existing techniques is that Ambitr can take the incorrect secret key

as input and generate legitimate-looking CPCs, making it difficult

to determine whether the given input is the correct secret key or

not. Unlike a typical state-machine, Ambitr’s state-machine allows

a transition on any inputs even if it does not match the transition’s

input (i.e., a typical state-machine will raise an error if it does not

match). The differences between the state transition’s input and

the given input are then used to generate output different from the

state transition’s output. This significantly enlarges the input/out-

put space of a state transition in Ambitr. With the state-machine,

Ambitr introduces a unique challenge to the adversary, Ambiguity,

meaning that even if the adversary identifies a legitimate-looking

output from Ambitr, the adversary does not know whether the out-

put is the genuine critical program component. To this end, with

the sophisticated construction of our state-machine, the critical

program component hidden by Ambitr is extremely challenging

to be identified. Moreover, even when some possible outputs are

identified, one cannot know which output is the genuine CPC.

Our contributions are summarized as follows:

• We analyze limitations of existing techniques aiming to hide pro-

gram code, and investigate a possibility of adding a new challenge:

ambiguity.

• Wepropose Ambitr, which can hide critical program components

(CPCs) through a sophisticated translation technique that accepts

any inputs and generates multiple plausible CPCs that are not

distinguishable from the genuine CPC.

• We perform a thorough evaluation using state-of-the-art dy-

namic, static, and symbolic analysis tools to demonstrate Am-

bitr’s resilience to reverse-engineering attempts.

2 POSITIONING AND BACKGROUND

2.1 Definition

Critical Program Component (CPC). We define Critical Pro-

gram Component as a piece of code or data that contains critical

program logic or information, which is not desirable to be known to

the adversary. It is important to mention that, in our context, while

the adversary knows that there is a CPC hidden in the program,

he or she does not know what the CPC should be. In other words,

given a set of plausible CPC examples, the adversary does not know

which one is the correct CPC. In this paper, we aim to prevent the

adversary from identifying and pinpointing the correct CPC.

2.2 Positioning

Typical Usage Scenario. Figure 1 illustrates how Ambitr oper-

ates under a typical usage scenario of our research. Specifically, in

a target program, we use our Ambiguous Translator to hide a criti-

cal program component. At runtime, it receives an input from an

external source such as network ( 1 ), and feeds it to the ambiguous

translator ( 2 ) which generates outputs according to the input. If

the input is the correct secret key, the genuine CPC is generated

( 3 ). On other inputs, our ambiguous translator still produces valid

outputs without failing. In particular, on certain specialized inputs,

decoy CPCs that are indistinguishable from the genuine CPC are

generated ( 4 ). Finally, the outputs (i.e., CPCs) are processed or

executed, if its type is an executable code ( 5 ).

Ambiguous 
Translator

Secret Input

Non-secret Input 1

Genuine CPC
(Critical Program Comp.)g

Decoy CPC 1

Target Program

Secret I

Adversary

Network Inputs

Non-secret Input 2 Decoy CPC 2

access to 
inputs

access to 
program code

indistinguishable 
outputs

… …

6

6 7

1

2
3

4

4
Processing or 

Executing

5

8 indistinguishable     
execution

Figure 1: Assumed Scenario and Scope of the Research.

Adversary Model and Scope. In this work, we assume the adver-

sary has access to previous inputs and the target program’s code,

including our ambiguous translator’s logic ( 6 ). The adversary can

also run the program with any inputs including the obtained previ-

ous inputs. The goal of Ambitr is to prevent the adversary from

identifying the secret input that can generate the genuine CPC

without a doubt ( 3 ). To achieve the goal, Ambitr can generate

outputs including the genuine CPC and decoy CPCs that are indis-

tinguishable from each other ( 7 ). The execution of the ambiguous

translator when it generates the original or decoy CPCs is also

indistinguishable, as well as the processing or execution of the

generated CPCs ( 8 ).

We assume that the previous inputs might exist in a network log

and are available to the adversary. However, the adversary does

not know what is the secret input, from the obtained previous

input. Some of the inputs may generate decoy CPCs. We assume

that target program’s behaviors and execution for processing and

executing the CPCs are not distinguishable. Otherwise, the code

can be traced to identify which input generates the genuine CPC. If

the original target program should execute different program code,

such code should be included in the executable CPC. We assume

the adversary can leverage various static and dynamic analysis

techniques to analyze our ambiguous translator. We consider our

approach is successful if the adversary fails to pinpoint the genuine

CPC, even if many (or even all) valid CPCs are identified.

2.3 Existing Techniques for Hiding CPC

A few techniques can be leveraged to hide a CPC in a program.

Specifically, the columns in Table 1 present the techniques while

each row of the table shows program analysis approaches that can

be used to identify CPCs. Symbols represent the effectiveness of

the program analysis approaches against each technique.
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Table 1: Effectiveness of Existing Techniques and Ambitr

against Program Analysis Approaches.

Obfuscators Packers/Crypters Protectors Ambitr

Static Analysis
1 2 2

Symbolic Analysis
1

Dynamic Analysis

Forced Execution

: Ineffective, : Less effective, : Effective (against analyses).

1: Static/symbolic analysis techniques have difficulty handling advanced

obfuscators (with multiple layers of obfuscations) due to state explosion,

while they can handle simple obfuscators.

2: Static analysis may handle known crypto algorithms while it may not

generically handle them (hence half-filled circled, meaning that effective

on some but not all).

2.3.1 Obfuscators. Obfuscation techniques [3, 5, 12, 16, 18, 24,

30, 37, 47, 54, 61, 64, 67, 76] aim to make the original code diffi-

cult to analyze by leveraging techniques including opaque predi-

cates [16, 47, 67], code insertion/replacement [5, 24, 37, 54, 61, 76],

and hardware primitives [12, 64].

Limitations. Obfuscation techniques that transform code into se-

mantically equivalent forms or add non-essential code (e.g., opaque

predicates and dummy code) [5, 16, 24, 37, 47, 54, 61, 67, 76] can be

handled by automatically reverting or removing the modified/added

code via program analysis techniques [33, 44, 49, 53, 80, 81]. De-

pending on the obfuscation techniques used, static and symbolic

analysis may suffer from the complexity of the analysis, meaning

that they might not be always effective, as described in Table 1.

Typically, dynamic analysis (including forced execution [57]) tech-

niques are highly effective in handling the obfuscation techniques.

While data obfuscation techniques [3, 18, 30] change the values of

data, their critical semantics are preserved and can be traced and

identified by both static and dynamic analysis [46, 79].

2.3.2 Packers/Crypters. Packers [14, 38, 40] primarily aim to hinder

static analysis. Specifically, they create a program containing com-

pressed original program as data, that uncompresses and executes

the original program at runtime. Crypters [2, 6, 29] are essentially

advanced packers using crypto techniques to hide the program data

and code. Due to the complexity of compression and encryption,

static and symbolic analysis are not effective as shown in Table 1.

In particular, symbolic analysis suffers from state explosion due to

the complex computations of encryption schemes.

Limitations. Since a packer generated program seamlessly un-

packs and executes the original code at runtime, dynamic analysis

(i.e., executing the binary and extracting the uncompressed pro-

gram) [13, 34, 62] can obtain the original program.

2.3.3 Protectors. Protectors [59, 69, 82, 83] are essentially advanced

packers/crypters equipped with evasive anti-analysis techniques

such as terminating the execution if they detect reverse-engineering

attempts (e.g., running the program with a debugger). Similar to

packers/crypters, since the program itself is compressed and en-

crypted, static and symbolic analyses are not effective, as described

in Table 1. Specifically, symbolic and concolic analyses can be used

to avoid the evasive techniques by extracting and solving the eva-

sive predicate conditions. However, they are difficult to scale to the

programs generated by protectors. Moreover, dynamic analysis is

ineffective because of the evasive techniques.

Limitations. Forced execution techniques [19, 32, 35, 57, 78] aim

to handle evasive techniques by forcibly executing branches regard-

less of the predicate conditions. Most protectors can be handled

by the forced execution techniques. Note that since the forced exe-

cution techniques forcibly execute program code regardless of the

predicate conditions, they may fail to handle an advanced protec-

tor which uses predicate conditions for both evasive techniques

and decryption (i.e., decryption logic is dependent on the predicate

conditions). However, by observing the predicate conditions and

executions of the program, it is straightforward to tune the anal-

ysis technique to handle such advanced protectors (e.g., one can

selectively solve such a critical predicate with symbolic execution

to handle the limitation) [70].

2.4 Desirable Properties

We present four desirable properties of a CPC hiding techniques:

Evasiveness, Complexity, Context-Sensitivity, and Ambiguity.

From Existing Literature. For the first three properties, we iden-

tify and summarize them from existing literature. Note that prior

literature does not explicitly present the properties. They are only

implicitlymentioned individually (e.g., evasiveness in [80], complex-

ity in [5], context-sensitivity in [40, 44]). We systematically studied

prior literature to establish the desirable properties. In particular,

from program analysis papers [33, 44, 80], we mainly focus on the

challenges, e.g., state-explosion caused by complexity, they pointed

out. From anti-program analysis techniques [5, 24, 40, 54, 64], we

pay attention to the approaches proposed by them to hinder the

analysis (e.g., evasive tactics [54]). We believe the four properties

thoroughly cover the core properties across the literature.

New Desired Property: Ambiguity. We introduce a new desir-

able characteristic: Ambiguity (details in Section 2.4.4).

2.4.1 Evasiveness. Programs that are highly evasive (e.g., programs

with a number of evasive predicates) impose significant challenges

to symbolic and dynamic analysis. For dynamic analysis, knowing

a number of concrete inputs that can cover all the evasive predi-

cates is challenging. For symbolic analysis, an excessive number

of predicates and complex predicate conditions cause the scala-

bility problem (i.e., taking too much time making the technique

practically unusable).

2.4.2 Complexity. Static and symbolic analyses have difficulty

analyzing programs with complex operations. Typical examples

are packed/encrypted programs. Static and symbolic analyses can

reverse-engineer the uncompression/decryption process. However,

they fail to scale complex algorithms (e.g., a crypto algorithm).

2.4.3 Context-sensitivity. Some programs have context-sensitive

code, meaning that their behaviors are dependent on a particu-

lar program execution path. Since there are a large number of

program paths, it is common for static analysis to conduct context-

insensitive analysis. Symbolic analysis aims to discover various

execution contexts; hence often suffers from the excessive number

of program execution paths, causing the path explosion. Forced

execution solves the path explosion problem by forcibly executing

code guarded by branches. However, due to the ignored branch out-

comes which lead to incorrect context, the results of the execution

may not be precise.
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Decoding/
Decryption

Error

DecryptedKey 1

Key 2

ErrorKey 3

Adversary
Error

Error

There is only one correct key that can successfully decrypt

Wrong keys always lead to errors

Figure 2: Existing Techniques are NOT Ambiguous.

2.4.4 Ambiguity. When an adversary obtains a successfully de-

coded/decrypted CPC, if the adversary can certainly say the CPC

is genuine, we consider the technique is not ambiguous. In other

words, if the adversary cannot determine whether the CPC is cor-

rect or not, we consider the technique has the ambiguity property.

Specifically, obfuscators do not go through a decoding process,

meaning that executing the obfuscated program would expose the

critical program components. Packers/crypters/protectors typically

store the compression/encryption key for the critical program com-

ponent in the programs. Hence, running the program, without any

particular input, would expose the CPC. Advanced crypters/pro-

tectors often store the key for CPC in a separate place, making

it challenging to decrypt. Similar to Ambitr, an application may

receive the key via the Internet.

Assume that an adversary obtains a few keys from the network

traffic logs, and try them to the program. Figure 2 describes an

example scenario with three different keys, where Key 1 is correct

and Key 2 and 3 are incorrect. Unlike Ambitr, existing crypters/pro-

tectors are not ambiguous, meaning that the decoding/decryption

will be only successful with Key 1 and all other keys (e.g., Key 2

and 3) will result in errors. As a result, observing any successful

decryption with a key implies that the decrypted CPC are genuine.

Table 2: Properties in Existing Techniques and Ambitr.

Obfuscators Packers/Crypters Protectors Ambitr

Evasiveness
1

Complexity
2 2 2

Context-Sensitivity
3

Ambiguity

: High, : Medium, : Low, : No.

1: Protectors have medium evasiveness because while they detect the environment

to avoid (e.g., VM/debugger), their detection is not sophisticated.

2: Obfuscators/Packers/Crypters/Protectors use various encoding/crypto algorithms

with varying complexity, determining the complexity property. Both simple and

complex algorithms are used, leading to the medium.

3: Very few protectors are context-sensitive: e.g., using a (context-sensitive)

variable as a decryption key.

Summary of Desirable Properties. Table 2 shows the de-

sirable properties in existing techniques and Ambitr. As dis-

cussed, none of existing techniques has the ambiguity prop-

erty. Moreover, Ambitr is more evasive, complex, and context-

sensitive than existing techniques.

3 DESIGN

3.1 Overview and Intuition

Ambitr leverages a specialized state machine to translate input to

CPCs. The state machine is designed to accept any input values and

generate the genuine CPC or decoy CPCs depending on the input.

The state machine achieves Evasiveness and Context Sensitivity

since without knowing the particular secret key (i.e., the secret

input) for the genuine CPC, executing the state machine with other

inputs does not produce the genuine CPC. The state machine con-

tains a number of states for decoy CPCs, achieving Complexity.

Finally, the decoy CPCs and the execution of Ambitr are not dis-

tinguishable to the genuine CPC, achieving Ambiguity.

3.1.1 Ambitr versus a Typical State Machine. A typical state ma-

chine only accepts input that can make state transitions from the

current state. Hence, to understand all possible inputs (and corre-

sponding outputs), one can collect all the state transitions’ inputs

and come upwith the permutations of them. Unlike traditional state

machine that should have an accepting state, Ambitr does not have

the acceptation state. It terminates when it has consumed all the

inputs. Note that Ambitr’s output is generated when a transition

happens, not at the accepting state as a traditional state-machine

does.

Figure 3-(a) shows an example state-machine. Circles and ar-

rows represent states and state transitions including input and

output of each transition (‘In’ and ‘Out’). A traditional state ma-

chine can only accept inputs that match the state transitions’ inputs.

For instance, from A , it only accepts two inputs “blinding” and

“Reference” that make transitions to B and C , respectively. The

restriction on accepted inputs essentially limits the input and out-

put space. Figure 3-(b) shows all possible inputs and outputs of the

traditional state machine from A to D and E . This can be done

by identifying all possible state transitions and inputs because any

other inputs (e.g., the last row of Figure 3-(b)) result in errors.

Inputs for CPCs is Implicit in Ambitr. Figure 3-(c) shows in-

puts and outputs that can be handled by Ambitr using the state

machine in Figure 3-(a). Note that it can handle all the inputs in

the same way the traditional state machine handles. The first row

shows an example.

Ambitr allows a CPC to be decoded by inputs that do not match

the state transitions’ inputs. The second row shows an example. The

first input “pywudh"” does not match any transition inputs from

A : “blinding” for B and “Reference” for C . However, as shown in

the third column, it makes a transition to B , since the distance (in

ASCII code value of each byte) between the given input and the state

transition’s input of B is closer than the state transition’s input of

C . When it produces an output, it also uses the measured distance

between the input and the state transition’s input to compute a

new output value that is different from the state transition’s output.

By doing so, Ambitr’s state machine does not have restrictions on

the inputs it can take, meaning that any inputs can be accepted.

Moreover, outputs that Ambitr’s state machine can produce are

not restricted as well.

The second, third, and fourth rows in Figure 3-(c) show examples

of legitimate-looking decoy CPCs (i.e., meaningful executable code

but not the genuine CPC) from inputs that do not match any state
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A

B
In: ‘blinding’

Out: ‘elements’

C
(a) State Machine  (‘...’ represents omitted states)

Input Output State Transitions

blinding control-codes elements extended-code A � B � D

blinding corresponding elements interchanging A � B � E

Reference illustration materials manipulation A � C � E

Reference bell control-codes materials ring extended-code A � C � B � D

Reference bell corresponding materials ring interchanging A � C � B � E

Reference Code materials <Error> A � C � <Error>

(b) Traditional State Machine’s State Transitions

D

E

…

…In: ‘Reference’

Out: ‘materials’

In: ‘control-codes’

Out: ‘extended-code’
In: ‘corresponding’

Out: ‘interchanging’

In: ‘illustration’

Out: ‘manipulation’
In

: ‘
be

ll’
O

ut
: ‘

rin
g’

Input Output State Transitions

blinding control-codes elements extended-code A � B � D

pywudh" "VATXf.AR3R*I system($_GET['xx']); A � B � D

rnpjmf" "]c{i4B unlink($file); A � B � D

Re[l $1kb, !*0prm,$h); mail ($to, $t,$msg,$h); A � C � E

(c) AMBITR’s State Transitions

Figure 3: Traditional State Machine vs. Ambitr.

transitions’ inputs. The three inputs have different sizes, and the

fourth row’s input leads to different state transitions ( A to C and

E ) from the other two. Note that many more inputs can generate

legitimate-looking outputs, and one can brute-force inputs (e.g.,

trying all possible strings for input) to enumerate them. We explain

the details of the state machine in Section 3.2.1.

3.1.2 Ambiguity in Ambitr. Ambitr introduces ambiguity in two

aspects: ambiguity in input/output and execution.

Ambiguous Input/Output. The input of Ambitr is ambiguous

because it can take any inputs even if it does not match any state

transition inputs, as shown in Figure 3-(c). When the input does

not match any state transitions, Ambitr finds a transition that has

the closest input to the provided input (in terms of ASCII code

value of each byte of input). Observe that Ambitr’s output can also

differ from the state transition’s output and is dependent on input,

meaning that the output is also ambiguous.

The ambiguity of the outputs makes the analysis inconclusive.

For example, in Figure 3-(c), the second, third, and fourth rows’

outputs are all legitimate executable code. Hence, it is challenging

to conclude which one is the genuine CPC.

Ambiguous Execution. One may use dynamic analysis to trace

the execution of Ambitr to understand whether there are any

execution differences while processing different inputs. If such a

difference exists, it can be used to infer the genuine CPC. As shown

in Algorithm 1 that describes the algorithm of Ambitr’s state ma-

chine (will be explained in Section 3.2.1), there are no predicates

and computations that behave distinctively. Hence, tracing the exe-

cution of Ambitr does not help to identify the genuine CPC.

Algorithm 1: Algorithm of Ambiguous Translator

Input : InStr: Array of Tokenized Input String.

Output : OutStr: Output String.

1 procedure StateMachine(InStr)
// Assign the Initial State (i.e., INIT).

2 Statecur ← INIT

3 while until it consumes all the tokens of InStr; the current token

is InStrcur do
// Find the matching (or closest) transition from the current state.

4 Statenext , Tran_InΔ , Tran_Out ← FindTransition
(Statecur , InStrcur )

// Change the current state

5 Statecur ← Statenext

6 Outcur ← ∅
// Compute Output according to the distance between the input and

transition’s input

7 for each byte 𝑡𝑖 and 𝑡𝑜 in Tran_InΔ and Tran_Out do
// ‘⋅’ is a string concatenation operator.

8 Outcur ← Outcur ⋅ Round(𝑡𝑜 − 𝑡𝑖 )

9 OutStr ← OutStr ⋅ Outcur

10 return OutStr

11 procedure FindTransition(Statecur , InStrcur)
12 MinScore ← −1
13 for each transition 𝑡𝑟 from Statecur do

14 Score ← 0

15 trΔ ← ∅
16 for each byte 𝑏𝑡 of input of transition 𝑡𝑟 , and each byte 𝑏𝑖

from InStrcur do

17 Score ← Score + | 𝑏𝑡 − 𝑏𝑖 |
// char() converts a number to a string, ‘⋅’ concatenates strings.

18 trΔ ← trΔ ⋅ char(𝑏𝑡 − 𝑏𝑖 )

// Finding the matching (or closest) transition.

19 if MinScore is −1 or min > score then

20 MinScore ← Score

21 Tran_InΔ ← trΔ
// trnext represents the next state of the transition tr

22 Statenext ← trnext
// trout represents the output of the transition tr

23 Tran_Out ← trout

24 return Statenext , Tran_InΔ , Tran_Out

3.2 Composing Ambitr

Ambitr consists of two components: (1) Ambiguous Translator,

which is a piece of software that processes input according to the

state machine definition to generate a CPC (Section 3.2.1) and (2)

definition of the state machine that the Ambiguous Translator

operates (Section 3.2.2).

3.2.1 Ambiguous Translator Runtime. The core of Ambitr is the

runtime of Ambiguous Translator. It has two unique characteristics.

First, regardless of the current state and input, it always transits to

another state even the input does not match any transitions (C1).

Note that, in a typical state machine, a state transition only happens

when there is a transition that can accept the current input. Second,

when Ambitr takes inputs that do not match the existing transi-

tions, the output generated by Ambitr is also different from the

transitions’ outputs (C2). Specifically, the final output is computed
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A
B

C

In: “unemploymentbenefit”
Out: “reassuringinvestors”

(a) Automaton

(b) Output Translation Results

…

…

Input Output State Trans.

'l18mibthay.G1'#T < $c->predict([1,2]); A � B

sjwmq_o{'"hsP)6 passthru($cmd); A � B

x{p^bZltd&)y`r$, urldecode($str); A � B

swvq1G#-{ $\hn) fwrite($f,$cnt) A � C

phvw,V#-y]r"5 chroot($dir); A � C

ozhm QhyyYsl"^) bzdecompress(d) A � C

(d) Output Computation

' l 1 8 m i b t h a y
u n e m p l o y m e n

78 2 52 53 3 3 13 5 5 4 -11

(c) Input Delta Computation

-

In: “Term/Conditions”
Out: “GenerateOutputs”

. G 1 ' #
t b e n e

70 27 52 71 66

T <
f i t

18 73 56

$ c - > p r e d i c t

r e a s s u r i n g i
78 2 52 53 3 3 13 5 5 4 -11-

( [ 1 , 2

n v e s t
70 27 52 71 66

] ) ;

o r s
18 73 56

Figure 4: Examples of Dynamic Output Translation. Compu-

tations, i.e., (b) and (c), are on ASCII Code Values.

based on a concrete input at runtime. This significantly enlarges the

search space of input and output. Algorithm 1 shows its algorithm,

and we will use it to explain the details of the two characteristics.

Making Transitions on Any Inputs (C1). Ambiguous Translator

makes transitions from any states on any inputs. Specifically, for all

next reachable states from the current state, it calculates the distance

(by subtracting values from each byte offset and accumulating the

results as shown in Figure 4) between the current input and the

transitions’ inputs (FindTransition in Algorithm 1). Lines 16-18

in Algorithm 1 essentially compute the distance (Score). Then, it
selects a transition with the smallest distance (if there are multiple

ties, we pick the first one to make it deterministic) as shown in

lines 19-23 in Algorithm 1.

Dynamic Output Translation (C2).When Ambiguous Translator

makes a transition on an input that is not exactly matched with

the transition’s input, it generates output that is different from the

current state transition’s output. Specifically, it computes the new

output by applying the differences between the current input and

the current state transition’s input. This makes the output space

significantly large as the output can vary as much as the input

varies.

In Algorithm 1, one of the return values of FindTransition
(line 4) is Tran_InΔ, which represents the distance between the cur-

rent input and the current state transition’s input. FindTransition
also returns the current (i.e., selected) transition’s output as Tran_Out.

Then, at lines 7-8, it computes the new output by subtracting each

byte of Tran_InΔ (i.e., 𝑡𝑖 ) from the transition’s output Tran_Out (i.e.,

𝑡𝑜 ). Note that there is the Round function at line 8, which essentially

rounds the computed value to be in the visible ASCII code value

range (i.e., 32∼126).
Example. Figure 4-(a) shows an automaton of a state machine

where inputs and outputs of transitions are illustrated above and

below the arrows. Figure 4-(c) describes an example computa-

tion of distances (i.e., delta) between the transition’s input (e.g.,

“unemploymentbenefit”) and the given input at runtime (e.g.,

“’l18mibthay.G1’#T <”). Specifically, for each character, it sub-
tracts ASCII code values of the characters. The results are shown at

the bottom line of Figure 4-(c). We then subtract the values to the

transition’s output to derive the final output (i.e., “$c->predict(
[1,2]);”) as shown in Figure 4-(d).

Figure 4-(b) presents six examples of input and output pairs from

A (three for A ↦ B and the other three for A ↦ C ). The first

example is the one that is illustrated in Figure 4-(c) and (d). The

second and third examples show inputs for generating function

calls passthru and urldecode. The three examples show that the

same state transition, A ↦ B , (with different inputs) can generate

completely different outputs (i.e., CPCs), making the translation

ambiguous.

The next three examples are generated via the transition A ↦
C . Again, depending on the given input, it generates completely

different outputs, and those outputs are all legitimate executable

code, making it difficult to know which one is the genuine CPC.

3.2.2 Composing Automaton. Ambitr’s Ambiguous Translator op-

erates on an automaton, where the definition of automaton is not

particularly different from the traditional automaton. The automa-

ton consists of states and transitions between the states, where the

transitions have inputs and outputs.

States and Transitions for the Genuine CPC. We first create

states and transitions that can generate the genuine CPC. Specif-

ically, given a CPC, we tokenize the CPC to obtain a sequence of

short strings (e.g., strings of 5∼10 lengths). Then we add a state that
can translate each token, and connect the individual states. The

resulting automaton is the minimum automaton that can generate

a CPC. We choose the input/output of state transitions by using a

dictionary (e.g., an English dictionary). Specifically, we randomly

pick two words for input (𝑊in) and output (𝑊out ) of a transition.

Then, to make sure that the transition can generate a desired token

of CPC (tokencur ), we obtain an input candidate for CPC by com-

puting (𝑊in − (𝑊out − tokencur )), which is essentially reversing the

translation process.

Figure 5 shows an example. Given the same state transition used

in Figure 4, we choose input and output from a dictionary. In this

example, we concatenate two words, “unemployment” and “benefit”

for input and “reassuring” and “investors” for output, as shown

in Figure 5-(a). Then, given a token string, to translate shown in

Figure 5-(b), we first compute𝑊out − tokencur as shown in Figure 5-

(c). We compute (𝑊in − (𝑊out − tokencur )) as shown in (d). The

outcome is the secret key that can generate the CPC token string

(tokencur ). Finally, we also run our ambiguous translator to check

whether the secret input can generate the CPC token. Note that due

to the rounding in the translation process (line 8 in Algorithm 1),

some secret keys obtained by the above process cannot generate the

CPC token string. If this happens, we choose another input/output

pair and repeat the process until it succeeds.
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A B
In (Win): “unemploymentbenefit”

Out (Wout): “reassuringinvestors”

(a) Automaton

(d) Secret Input Computation

' l 1 8 m i b t h a y

u n e m p l o y m e n

78 2 52 53 3 3 13 5 5 4 -11

(c) Delta Computation

-

. G 1 ' #

t b e n e

70 27 52 71 66

T <

f i t

18 73 56

$ c - > p r e d i c t
r e a s s u r i n g i

78 2 52 53 3 3 13 5 5 4 -11-

( [ 1 , 2
n v e s t

70 27 52 71 66

] ) ;
o r s

18 73 56

(b) CPC Token String

$c->predict([1,2]);

Figure 5: Identifying Secret Key for a CPC Token.

Unnecessary States and Transitions.We then add extra states

and transitions between all states to hinder analysis attempts of

the state machine. Dummy transitions connect all states (not only

dummy states), making Ambitr more difficult to analyze. Note

that the dummy states and transitions are used to translate decoy

(i.e., fake) CPCs. Inputs/outputs of the transitions to the dummy

states are chosen in a way that the inputs of all transitions look

similar, making it challenging to know which transitions are for the

genuine CPC. Specifically, for each newly added transition, its input

is derived by choosing a similar word (i.e., synonyms/antonyms in

dictionaries [22, 58]) to its neighboring transition’s input.

4 EVALUATION

In this section, we present various experimental results to show

the effectiveness of Ambitr in comparison with existing state-of-

the-art techniques and analysis tools. In particular, we evaluate

Ambitr in terms of evasiveness (via dynamic analysis tools in

Section 4.3.1), complexity (via static analysis tools in Section 4.3.2

and Section 4.3.3), and the context-sensitivity (Section 4.3.4).

Implementation.We implement our Ambitr creator in Python

(1,322 LOC). It generates Ambitr, written in PHP (2,314 LOC ex-

cluding lines for the transition inputs and outputs).

Ambiguous Translator Configuration. For the evaluation, Am-

biguous Translator is configured to create binary samples with at

least more than 300 nodes and each node has at least 5 edges.

Table 3: Ambitr Instances Statistics.

Size of # of Avg. Size of Avg. # of Avg. # of

CPCs (Avg.) Samples Ambitr States Transitions

0∼10 KB (2.7 KB) 345 27.36 KB 603.6 4,843.4

10∼20 KB (14.5 KB) 99 77.72 KB 2,476.1 19,194.7

20∼30 KB (24.0 KB) 39 130.15 KB 4,012.8 32,334.9

30∼40 KB (34.7 KB) 56 175.81 KB 5,671.7 45,659.0

40∼50 KB (43.7 KB) 34 209.71 KB 7,209.5 58,124.1

4.1 Applicability

To understand whether Ambitr can be created by various input/out-

put pairs, we collect 573 code snippets and programs from popular

repositories [7, 8, 23, 51, 74]. Note that for Ambitr, those input

CPCs are simply strings, and values of the inputs do not affect

Ambitr’s performance.

We successfully generate Ambitr instances for all 573 collected

samples as shown in Table 3. Given the secret input, they all suc-

cessfully generate CPCs as expected. We categorize them by the

samples’ sizes (with an interval value of 10 KB). The sizes of Am-

bitr are larger than the original samples (we apply compression,

e.g., gzip, to reduce the size of Ambitr). Except for the first group,

the size of Ambitr is about 5 times larger than the original sample.

4.2 Automated Analysis of Ambitr

We compare Ambitr with state-of-the-art obfuscation/protector

techniques to showAmbitr effectively hides CPCs. In particular, we

use a forced execution technique MalMax [48] as it can effectively

expose CPCs hidden by existing techniques (see Table 1).

Obfuscators/Protectors Selection. Four state-of-the-art PHP ob-

fuscators and two crypters/protectors are chosen based on their

popularity. Obfusactors include PHP Obfuscator [26], YAK Pro [36],

Best PHP Obfuscator [60], and Simple Online PHP Obfuscator [39].

Crypters/protectors include Zend Guard [83] and PHP Encoder [59].

Result. As discussed in Section 1, obfuscators do not require any

particular input or environment to decode and run the genuine CPC.

Even without the forced execution technique (MalMax), we observe

the CPC’s execution by simply running them. For Zend Guard and

PHP Encoder, it requires the encryption key to be accessible via

network. We use MalMax to run the programs protected by Zend

Guard and PHP Encoder, without encryption key access. Initially,

they all fail to execute. Then, we try an incorrect key by creating

another key from Zend Guard and PHP Encoder. The wrong key

is essentially a key for another program. As expected, the wrong

key results in failed executions for all samples because the existing

techniques are not ambiguous (as shown in Figure 2).

Then, we use a correct key (obtained by tracing network com-

munications when it runs without errors). We run MalMax again

with the correct key, and all samples are successfully decrypted

and expose CPCs. As discussed in Section 2.4.4, the fact that it can

successfully execute indicates that the identified CPCs are genuine.

We also use MalMax to analyze Ambitr protected samples. How-

ever, MalMax fails to expose any of CPCs from the samples. This

is because MalMax focuses on executing all statements without

precisely identifying the key secret inputs. Simply executing all

statements of a target is not sufficient for analyzing Ambitr. More-

over, while the execution of Ambitr under MalMax is incorrect,

Ambitr does not cause any errors or observable behavior differ-

ences. Some generated outputs are not valid while there are still

many seemingly valid outputs looks like CPCs, causing ambiguity

in analysis. Even one can observe the genuine CPC (e.g., having a

network trace of the input leading to the genuine CPC), knowing

whether the observed CPC is the original is not verifiable.

4.3 Reverse Engineering Ambitr

We evaluate Ambitr from a reverse-engineer’s perspective in

terms of how difficult to reveal the genuine CPC using various

program analysis tools manually. In the following subsections, we
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

for($i = 0; $i < ...; $i++)
define("ST$i", $i);

define("CUR_STATE", 0);
define("INPUT", 1);
define("OUTPUT", 2);
define("NEXT_STATE", 3);

$state_tbl = array(
/* array(CURRENT_STATE,

INPUT OF THE TRANSITION,
OUTPUT OF THE TRANSITION,
NEXT STATE) */

array(ST0, "states", "urdonk", ST1),
array(ST0, "prince", "drunks", ST2),
array(ST1, "celestiala", "7GZ~mp3.es", ST3),
array(ST1, "systematia", "83s|png.ez", ST3),
array(ST3, "costinfisco", "wxp.zwl*30", ST2),
array(ST2, "fiscaltable", "ubuntu|+0F", ST3),
...
);

$cur_state = ST0;
while(1) {

$tran = find_transition($state_tbl, $cur_state, $input);
$cur_state = $state_tbl[$tran][NEXT_STATE];
$result .= dynamic_translate( $state_tbl[$tran][INPUT],

$state_tbl[$tran][OUTPUT],
$input);

}
function dynamic_translate($in, $out, $cur_in) {

for( $i = 0; $i < strlen($cur_in); $i++)
$ret .= chr(ord($out[$i]) -

(ord($in[$i]) - ord($cur_in[$i])));
return $ret;

}
function find_transition($state_tbl, $cur_state, $in) {

foreach ( $state_tbl[...] as $next_transition )
for ( $j = 0; $j < strlen($in); $j++ ) 

$d[...] += abs(ord($state_tbl[...][$j]) - ord($in[$j]));
return index( min( $delta ) );

}

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

ST0 ST1

ST2 ST3

In: “states”
Out: “urdonk”

In: “p
rince”

O
u

t: “d
runks”

In: “system
atia”

O
u

t: “83s|
p

ng.ez”

In: “celestiala”
O

u
t: “7G

Z
~

m
p3.es”

In: “costinfisco”
Out: “wxp.zwl*30”

In: “fiscaltable”
Out: “ubuntu|+0F”

(b) State Machine 
(Red arrows are the transitions generate 
the genuine CPC. ST0 is an initial state) (a) Source Code of the Example Ambiguous Translator

Figure 6: Simplified Source Code of Ambiguous Translator (in PHP).

assume that the reverser obtains a sample of Ambitr without know-

ing the intended input that generates output.

4.3.1 Dynamic Analysis. We assume a scenario that the reverser

attempts to use Xdebug [21] to monitor its execution. Xdebug is a

PHP debugging extension, providing various debugging primitives

such as step-debugging (i.e., single-stepping), variable dumps, and

stack traces. Specifically, it traces variables that are used to compute

outputs from inputs [20], similar to program slicing [1, 77].

Analyzing Executed Statements. The reverser traces all state-

ments that read and write inputs and values that are computed

from inputs (i.e., values that are data dependent on the inputs).

Unfortunately, as a state machine is implemented as a loop that

makes transitions according to the current input (e.g., as shown in

Figure 6-(a)), the resulting traces include most of the statements

regardless of whether the execution delivers an attack or not.

AnalyzingValues fromExecuted Statements.The reverser also

dumps all the values of the variables used in the executed state-

ments. However, as the execution does not deliver the genuine CPC,

analyzing the values does not help.

4.3.2 Static Analysis. Static analysis tools can be used to analyze

Ambitr to identify possible output values that can be generated

by Ambiguous Translator. Specifically, the reverser uses static taint

analysis tools to find out the data flow of Ambiguous Translator.

Further, static analysis tools that can conduct a value-set analysis

(e.g., [4]) are used to infer possible values of a few key variables.

Simplified Source Code of Ambiguous Translator. Figure 6-

(a) shows a simplified version of Ambiguous Translator written in

PHP. Lines 1-6 define constants. Lines 8-20 build a state transition

table that is essentially an array of state transition rules including

current state, input/output of the transition, and next state (line

13-18). It has a loop (lines 22-28) that repeatedly finds a transition

according to the input (line 23), makes the transition (line 24), and

dynamically creates an output according to the input (line 25). The

dynamic translation is done in a function (lines 29-34). The result

is essentially a concatenated string of the dynamic outputs (line

31). Figure 6-(b) shows the ground-truth of Ambiguous Translator

shown in Figure 6-(a). It has four states (ST0 ∼ ST3) and there are
multiple transitions among ST1, ST2 and ST3.

Figure 7: Data Dependency Graph by Taint Analysis.

Backward Data Slicing via Taint Analysis. There are several

PHP static analysis tools that support taint analysis: Pixy [33],

Eir [27], Taint’em All [81], and TaintPHP [53]. Note that most of

them do not properly propagate taint tags through array and ar-

ray index operations. Hence, we reimplement Figure 6 without

using arrays so that they can effectively analyze Ambitr. Moreover,

TaintPHP [53] does not support inter-procedure analysis; hence we

inline all functions (e.g., dynamic_translate()) in Ambitr and
feed it to TaintPHP. To this end, the reverser leverages the above

four taint analysis tools to obtain a data dependency graph shown

in Figure 7. It essentially shows that the value of $result is com-

puted by $out that is again dependent on all the variables including

$input, $state_tbl arrays, $tran, and $cur_state. While this

is accurate, the result is too coarse-grained. Specifically, it shows

all the $state_tbl arrays are contributing the value of $result.
It does not provide a particular order of state transitions which is

critical in revealing attack delivering inputs. Note that one may

improve the analysis to better support arrays (i.e., array-sensitive

analysis). However, while array-sensitive analysis can improve the

granularity of the analysis (i.e., identifying data-dependencies at

an element level), it still provides the same information and does

not help identify the real CPC.

Value-set Analysis. The reverser uses three static analysis tools

for PHP: PHPStan [45], Psalm [73], and WeVerca [28]. The tools
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Table 4: Value-set Analysis Result for Key Variables.

Variable Value-Set

$tran {0, 1, 2, 3, ... }

$cur_state {ST0, ST1, ST2, ST3, ... }

$ret {"urtonk", "drunks", "7GZ∼mp3.gs", "83s|png.gz"
"wxp.zy|*3F", "ubuntu|+0F", ... }

$result Combinations of values of $ret

implement a data flow analysis technique that can be used to build

value-set analysis, which identifies a set of possible values a vari-

able can have during the execution [4]. The reverser leverages

them to infer potential values that each variable can hold in the

Ambitr instance shown in Figure 6-(a). Table 4 shows the result

of the value-set analysis on each key variable in Figure 6-(a). In

short, the result is not an effective way to expose the genuine CPC

due to two reasons. First, while the analysis reveals all possible

inputs for $ret and $result, it simply dumps all the outputs of
the transitions in Ambiguous Translator. To analyze Ambiguous

Translator, one has to understand the order of outputs generated

by transitions rather than a set of outputs. Second, even for the

revealed outputs stated in Ambiguous Translator as shown in Ta-

ble 4, they are misleading. Those outputs are not the ones that

will be generated when an attack delivering input is provided. For

instance, the Ambitr instance in Figure 6-(a) can deliver a code snip-

pet unlink(‘/tmp/.found.txt’); when a sequence of inputs

spines, TEA[steam], and aegtconfine are provided. The inputs

dynamically transform the outputs annotated on the transitions

(i.e., urdonk, 7GZ∼mp3.es, and wxp.zwl*30) into the code snip-
pets (i.e., unlink, (‘/tmp/.fo, and und.txt’); respectively).

4.3.3 Symbolic Execution Tools. In this section, the reverser uses

symbolic execution tools to reverse-engineer the genuine CPC

translation logic of Ambitr. Specifically, four symbolic execution

tools, THAPS [31], PHPScan [72], KPHP [25], and Symex [50] are

used. The tools aim to identify all possible inputs that can lead

to new program execution paths or states. Note that a non-array

version of Ambitr is used, as the symbolic executions fail to support

array properly.

State Explosion. None of the symbolic execution tools we used

finishes the analysis in a week due to state explosion [10, 15, 71].

Specifically, for each state, Ambiguous Translator has multiple tran-

sitions to the next states. Hence, the number of possible transition

paths grows exponentially. For instance, suppose the input has 𝑥
words requiring 𝑥 state transitions, there will be 5

𝑥
possible tran-

sition paths, leading to state explosion. KPHP [25] crashed after

running 7 hours 17 minutes due to insufficient memory. Further, we

create a simplified version of Ambitr that has a single transition

with a 4-byte input for each transition. The four symbolic execution

tools failed to finish the analysis within a week as well.

Experiments with Enhanced PHPScan. Since the vanilla ver-

sions of symbolic execution tools failed to analyze a very small

instance of Ambitr (with a single transition), we manually opti-

mize PHPScan [72] and use it to analyze Ambitr. Specifically, we

modify PHPScan so that it can (1) cache and reuse solved constraints,

and (2) merge and reduce multiple constraints into fewer constraints.

We use a machine with Intel i7-8550U 4.0 GHz and 16 GB RAM

to run this experiment. We conduct two experiments. We prepare

Ambitr instances with (1) different numbers of transitions where

each transition will take 3-byte input and (2) a single transition but

with different input lengths.

1) Different numbers of transitions: As the number of transitions

increases, the number of states to explore is increased exponentially.

For instance, with a single additional transition, the number of

states becomes 10 times larger. We prepare simplified versions of

Ambitr that have 4, 5, and 6 transitions where each transition

takes 3 characters long input. We use PHPScan to analyze them. It

takes about 3 hours, 2 days, and 4 weeks to finish the analysis of

Ambiguous Translator with 4, 5, and 6 transitions, respectively. Note

that the input length (currently 3) is a root cause of state explosion.

In this example, we set it 3 for each transition.

2) Different input lengths:Dynamic output translation also causes

the state explosion. To understand its impact on the number of

states during the symbolic execution, we create a simplified version

of Ambitr with input lengths of 6, 7 and 8. Analyzing a single

transition for the input length 6 (i.e., 6 characters input) takes about

15 hours 30 minutes. Input lengths 7 and 8, which are typical lengths

of inputs in our samples, take more than 2.9 days and 13 days to

finish the analysis, respectively. This shows that analyzing even a

single transition is time-consuming.

Optimization Causing Under-approximation. Symbolic anal-

ysis, in practice, uses an optimization strategy that aims to find one

input that drives the execution to a particular point instead of enu-

merating all possible inputs. As a result, even the reverser reaches a

particular state, the identified input is unlikely an attack delivering

input. For example, in Figure 8-(a), the array $fn represents a func-

tion name. Before it’s invoked at line 6, it is constructed at lines

3–5 after satisfying multiple path conditions at line 2. Symbolic

analysis encodes the path conditions and gets one solution shown

in Figure 8-(b) from the underlying constraint solver. The execution

successfully goes into the true branch and invokes the function $f.
However, it invokes function uniqid instead of function unlink
that constitutes the genuine CPC as shown in Figure 8-(c). Given

this branch has been successfully explored, the symbolic analysis

will not try other solutions satisfying the path condition and thus

cannot discover the genuine CPC.

1
2

3
4
5
6
7

(a) Source Code

(b) Resolved $fn[] and $f

(c) Intended $fn[] and $f

$fn = array(...);
if ($fn[0] >= 85 && $fn[1] >= 78 &&

$fn[2] >= 73 && $fn[3] >= 81 &&
$fn[4] >= 73 && $fn[5] >= 68 ) {

foreach($fn as $c)
$f = $f.chr($c);

$f = strtolower($f);
$f(...);

}

Variable Value

$fn[] {85,78,73,81,73,68}

$f “uniqid”

Variable Value

$fn[] {117,110,108,105,110,107}

$f “unlink”

Figure 8: Symbolic Execution Exploring a Single Input.

Describing Constraints. Although the reverser can use symbolic

analysis to model the path predicates as constraints and drive the

execution to a particular program location, it is challenging to

explicitly encode the criteria of the genuine CPC as constraints (e.g.,

constraints that describe the CPC). In other words, he may not

even know what exactly he is looking for and how to describe the

logic in a way the underlying constraint solver can understand. For
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example, it is challenging because any valid statements and function

names can be potentially CPC. As a result, the satisfiable solutions

to the incomplete constraints may lead to a place of interest but

will not reveal the genuine CPC.

Empirical Experiment on the State Explosion. To understand

how difficult to analyze Ambitr with symbolic execution tech-

niques in detail, we run experiments with PHPScan [72] which

uses the z3 solver [43] for constraint solving. Note that the origi-

nal version of PHPScan was too inefficient. It failed to finish the

analysis on a very small Ambitr sample (e.g., a single transition of

4 characters long input/output) in 24 hours. Hence, we manually

improve the PHPScan’s performance by modifying it to (1) cache

and reuse already solved constraints, and (2) merge and reduce

multiple identical constraints into fewer constraints. We run the

enhanced version of PHPScan on a machine with Intel i7-8550U 4.0

GHz and 16 GB RAM.

Table 5 shows the experiment results. As shown in the “Au-

tomaton Size” columns, we created 16 different sizes Ambiguous

Translator. The size is defined as a pair of the length of input char-

acters and the number of the transition. For instance, “6 chars., 1

trans.” means a Ambiguous Translator that has a single transition

between two states, and the transition input/output is 6 characters

long. An example can be a sub state-machine of Figure 9 between

ST_0 and ST_1 (Input: “states”, Output: “urdonk”). The “# Const.”
columns present the number of constraints that should be explored

by PHPScan. The “Time” columns show the required time for the

analysis. Note that as the Ambiguous Translator gets bigger, the

number of constraints increases exponentially. In many cases (i.e.,

the gray cells), the experiments did not finish even after 10 days.

For those cases, we estimate the required time based on the number

of processed constraints and remaining (also estimated) constraints.

Observe that the enhanced version of PHPScan takes more than

10 days to analyze Ambiguous Translator instances with more than

3 transitions of 5 characters input/output (which is much smaller

than typical Ambiguous Translator we generated and used).

Figure 9 consists of 17 transitions and its average input/out-

put size is 9.64, which is much larger than the largest Ambiguous

Translator presented in Table 5 (4 transitions of 7 characters long

input/output). Note that even if the analysis successfully finishes,

the analysis results (e.g., inputs to make all possible transitions) do

not expose the genuine CPC.

Table 5: PHPScan on Different Sizes of Ambitr

Automaton Size # of
Time

Automaton Size # of
Time

(Input, Trans.) Const. (Input, Trans.) Const.

4 chars., 1 trans. 35 K 31.5 m 6 chars., 1 trans. 10 M 14.8 h

4 chars., 2 trans. 386 K 4.3 h 6 chars., 2 trans. 112 M 4.7 d

4 chars., 3 trans. 6 M 8.1 d 6 chars., 3 trans. 1.2 B 149.3 d

4 chars., 4 trans. 61 M 121 d 6 chars., 4 trans. 12 B 5.7 y

5 chars., 1 trans. 181 K 2.9 h 7 chars., 1 trans. 4 M 3.5 d

5 chars., 2 trans. 1.9 M 19.8 h 7 chars., 2 trans. 4.5 B 26.3 d

5 chars., 3 trans. 31 M 37.8 d 7 chars., 3 trans. 49 B 1.6 y

5 chars., 4 trans. 315 M 1.4 y 7 chars., 4 trans. 498 B 20 y

Gray cells indicate that the experiments did not finish in 10 days. The times presented

for them are estimated based on the performance measured in the first ten days of

execution.

4.3.4 Source Code and Input Analysis. We aim to show how the

reverser would make manual reverse-engineering attempts to find

ST_0 ST_1

ST_2

In: “states”
Out: “urdonk”

In
: “

p
ri

nc
e”

O
u

t: 
“d

ru
nk

s”

ST_3
In: “celestiala”

O
u

t: “7G
Z

~m
p3.es”

ST_4

In: “fiscaltable”
Out: “ubuntu|+0F”

In: “financially”
Out: “linuxmint|”

In: “costinfisco”
Out: “wxp.zwl*30”

In: “contingent”
Out: “provisional” In: “pigeonhole”

Out: “discompose”
In: “astronomia”

Out: “w95.vb|abc”

ST_5In: “speeds”
Out: “ugrind”

In: “securityprivacy”
O

u
t: “responsibility”

In: “reality”
Out: “mage|rv”

ST_6

In: “constant-value”
Out: “definite|-tonk”

Figure 9: SimplifiedAmbiguous Translator used in the Input

Analysis.

Input Output Transitions

Initial Input states celestials cost-
effective fiscal-year

urdonk 7GZ~mp3.e 
wxp.>nl’%0ive ubuntu5C3;

ST_0�ST_1�ST_3 
�ST_2�ST_3

First Trial realm; celestials cost-
effective fiscal-year

sWgmmP 4TZ~mp4.g  dekj’mlWl
ok  +#sklm33azr

ST_0�ST_5�ST_6 
�ST_1�ST_2

Second Trial province celestials cost-
effective fiscal-year

dr{vq| iely}~int  boo*jeVWZw\{  
Zaak5ylar

ST_0�ST_2�ST_5 
�ST_4�ST_1

Third Trial states planetary cost-
effective fiscal-year

urdonk 5&avpug,u  ios7ofsmsive 
ei^^q,iWXu

ST_0�ST_1�ST_2 
�ST_5�ST_4

Fourth Trial states astronomical 
cost-effective fiscal-year

urdonk w95.vb|abeal  prtv-jhpe
Pive Zcizear

ST_0�ST_1�ST_4 
�ST_0�ST_2

Figure 10: Inputs used during the Input Analysis.

out the secret input leading to the genuine CPC in Ambitr by

manually inspecting source code and guessing inputs. We assume

the reverser obtained a sample of Ambitr and reverse-engineered

Ambiguous Translator as shown in Figure 9. Then, the reverser

executes the sample and identifies input that the sample retrieves.

The input are shown in the first row of Figure 10 (Initial Input).

As expected, the input does not lead to the genuine CPC. To this

end, the reverser tries to guess inputs leveraging knowledge gained

from manual source code inspection.

The reverser modifies the first input by guessing a possible al-

ternative word. Specifically, realm; is chosen as it is a synonym
for states, the original input. Note that all other inputs remain
unchanged. However, since the first input leads to a different transi-

tion (ST_0→ST_5), all the subsequent transitions (shown in the last
column) are different from the transitions for the initial input, result-

ing in a completely different output. In the second trial, the reverser

changes the first input to province, which is another synonym
for states. Again, the output and the transitions are changed sig-
nificantly, leaving no particular hints for the next trial. From the

third trial, the reverser starts to guess the second input. Specifically,

planetary is used. Observe that the first output word remains the

same, while all the subsequent outputs and transitions are changed.

While this shows that the first input is related to the first output, it

is not useful in reverse-engineering the attack delivering the input.

The fourth trial is similar. Changing a single word in the input leads

to all subsequent output words, and transitions being changed.
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5 DISCUSSION

Generality.While we implement our prototype in PHP, the idea is

general and can be implemented in other programming languages.

To support executable CPCs, one needs to implement dynamic

code generation and execution primitives such as eval(). Script
languages such as JavaScript and Python support them by default.

In other programming languages such as C/C++, one may leverage

JIT compilation techniques [11].

Handling Non-ASCII Inputs and Outputs. For better readabil-

ity, we only discuss example cases when inputs and outputs are

ASCII characters. However, Ambitr seamlessly supports non-ASCII

inputs and outputs. Specifically, if the input is out of range of ASCII

characters, Ambitr calculates the distance of provided input and

the state transition’s input without converting them to ASCII code

value. Similarly, Ambitr computes the output directly from the

distance values and state transition output without considering

their ASCII values.

Threats to Validity. The experiments in Section 4.2 are conducted

by two individuals who have sufficient background in computer

science using state-of-the-art open-source tools. Specifically, the

experiment presented in Section 4.3.3 is conducted by a computer

science Ph.D. student with sufficient program analysis and secu-

rity background. The work in Section 4.3.4 is done by an expert in

software engineering and security (holding a Ph.D. in Computer

Science). In addition, two undergraduate students majoring in Com-

puter Science (focusing on computer security) have repeated the

experiments and reached the same conclusions. Note that all partic-

ipants did not know the proposed approach prior to the experiment.

The analysis results may differ depending on the tools’ capability

and the analysts’ expertise.

6 RELATEDWORK

Hiding Program Code. There exists a line of work in obfuscation

to hide program code leveraging opaque predicates [16, 47, 67], code

insertion/replacement [5, 37, 54, 61, 76], encryptions [66, 75], hard-

ware primitives [12, 64], and sub-tree embedding [24]. However,

opaque predicates can be detected and removed via advanced pro-

gram analysis techniques [44]. Dummy code snippets inserted into

an existing program can be identified and removed via dependency

analysis such as taint analysis [17, 27, 33, 42, 52, 53, 55, 56, 63, 65, 81].

Anti-analysis Techniques. Recently, [54] presents a systematic

study of multiple methods to hinder symbolic execution techniques.

Specifically, it inserts additional code to increase the number of

feasible paths. Ambitr’s Ambiguous Translator not only increases

the number of feasible paths but also provides many more addi-

tional challenges such as ambiguity via dynamic output translation.

[24] transforms program code snippets into a sub abstract syntax

tree (AST), and injects the tree into the AST of a program. How-

ever, dynamic analysis and symbolic analysis tools can detect such

injected code. Data obfuscations (e.g., encrypting code sections

and decryption them at runtime) are easily handled by dynamic

analysis [9, 41, 68]. Approaches that require particular hardware

support are difficult to be used in real-world program, as many

systems may not satisfy the hardware requirement. Unlike them,

Ambitr is challenging to be analyzed by static, symbolic, and dy-

namic analysis tools as shown in Section 4. It does not require any

particular hardware or software.

7 CONCLUSION

Protecting critical program components (e.g., patented program

logic or sensitive data) is an important requirement in software

systems. In this paper, we present Ambitr, a novel technique that

hides critical program components via a sophisticated state machine

based translator called Ambiguous Translator. It imposes fundamen-

tal challenges to state-of-the-art program analysis techniques by

adding a new dimension of the challenge: ambiguity. Our evaluation

of the comparisonwith a diverse set of state-of-the-art analysis tech-

niques, including dynamic, static, and symbolic execution, shows

that Ambitr is effective in hiding critical program components.
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