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Abstract—The packet stream analysis is essential for the early
identification of attack connections while in progress, enabling
timely responses to protect system resources. However, there are
several challenges for implementing effective analysis, including
out-of-order packet sequences introduced due to network dynam-
ics and class imbalance with a small fraction of attack connections
available to characterize. To overcome these challenges, we
present two deep sequence models: (i) a bidirectional recurrent
structure designed for resilience to out-of-order packets, and (ii) a
pre-training-enabled sequence-to-sequence structure designed for
better dealing with unbalanced class distributions using self-
supervised learning. We evaluate the presented models using a
real network dataset created from month-long real traffic traces
collected from backbone links with the associated intrusion log.
The experimental results support the feasibility of the presented
models with up to 94.8% in F1 score with the first five packets
(k=5), outperforming baseline deep learning models.

I. INTRODUCTION

Network-based attacks happen increasingly with growing
volume and impacts. This becomes more critical with ever-
growing connectivity with less secure Internet of Things (IoT)
devices through wireless mobile communications. One of
the essential functions to protect computing resources in the
networking environment is the effective detection of network
attacks. The approach to network attack detection can be either
host-based or connection-based (i.e., host-independent), and
the latter would be an attractive option with relatively low
deployment and operation costs [1]. In addition to detection,
the capability of timely responses is another vital requirement,
so as to minimize detection deficit (the gap between the
time to compromise and the time to defend) [2]. That is,
the network should be able to prepare and enforce relevant
countermeasures against individual attack activities before they
are successfully executed. To this end, there would be at least
two prerequisites: First, the class of attacks should be identified
in the detection time to prepare relevant countermeasures (e.g.,
based on predefined security policies). Second, the detection
process should be done as early as possible while the attack
is active and in progress.

Recently a body of studies has employed machine learning
(ML) techniques for detecting network attacks [3], [4]. Despite
their promising detection performance reported, most (if not
all) of previous studies assume the availability of complete
connection records that are only available at the connection
termination time. For instance, common public datasets (e.g.,
KDDCup 1999/NSL-KDD [5], UNSW-NB15 [6], and CIC-
IDS2017 [7]) provide the complete connection information

such as duration, aggregated bytes, and number of packets.
Such reliance confines the capability of attack detection to
postmortem analysis rather than live online detection for
timely actions. Moreover, a large body of ML-based detec-
tion studies targeted anomaly detection (i.e., binary decision
whether it is likely an attack or not); attack detection is a more
complicated problem and requires the ability to identify the
type of attacks (e.g., Web, DoS, and scanning attacks). Deep
packet inspection is an effective method for identifying attack
classes at the early stage of connections by applying pattern
matching with predefined byte sequences (“signatures”) [8].
However, any payload inspection approach is extremely expen-
sive for analyzing packet payloads and limited to unencrypted
packets only. Moreover, there is a trend of banning payload
scanning with an increasing demand on privacy, which renders
it unlawful to read even cleartext packets. In this study, we take
an approach of packet stream analysis referencing statistical
information of packet sequences, thus requiring neither packet
inspection nor complete connection information.

For effective packet stream analysis, there exist several
intricate challenges. First, the communication network is wild
and network dynamics (e.g., routing oscillation) may lead to
incomplete or out-of-order packet sequences in collection. For
example, packet loss rates are non-negligible in reality, ranging
from 0.01% to 20%, even in wired networking settings [9].
Packet reordering refers to the reception of packets in a
different order than what were originally sent, and it is in-
evitable to see packet reordering in packet-switched networks
due to several reasons, such as multi-path forwarding routes,
parallelism, and packet loss and retransmission [10]. Possibly,
recovering from packet reordering by referring to the sequence
number field is an option, but it is a highly expensive operation
with extra space and time requirements in an intermediate
point in the network. Such dynamics is generally more critical
in wireless mobile communications with greater loss and
retransmission rates. Second, the measured data collection
shows a high degree of class imbalance with only a small
fraction of attack connections. We can also find significant
variations even from the distribution of attack types (also
observed from our dataset in Table II). Another challenge
would be a trade-off between the number of packet stream
variables to be managed and analyzed vs. the corresponding
time/space complexity: for example, a greater set of variables
in analysis may yield better performance, while imposing
greater overheads and expenses.
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Contributions: This paper sheds light on the design of deep
learning models for effective packet stream analysis, which
enables us to make timely responses against network attacks
by identifying in their early stages. The main contributions
are two-fold. First, we present two deep sequence models
designed to overcome the aforementioned challenges: (i) a
bidirectional recurrent structure designed for greater resilience
to missing/out-of-order packet streams, and (ii) a pre-training-
enabled sequence-to-sequence structure designed for creating
consistent representations from unbalanced class distributions
using self-supervised learning. Second, we share evaluation
details with our observations and analysis. We conduct the
evaluation using a real network dataset created from month-
long real traffic traces collected from backbone links with the
associated intrusion log. The experimental results show that
our deep sequence models consistently outperform baseline
deep learning models across diverse experimental settings,
yielding up to 94.8% in F1 score with the first five packets
(k=5).

The organization of this paper is as follows. In Section II,
we provide the description of the problem and present the
framework model designed to tackle the problem. We next
introduce the dataset constructed from the Internet backbone
traffic traces with the associated intrusion logs in Section III,
and then present our deep sequence models developed to an-
alyze the potentially imperfect and unbalanced packet stream
data in Section IV. We share the experimental setting and
results with our observations and implications in Section V,
and provide a summary of closely related studies in Section V1.
We finally conclude our presentation in Section VII, with the
summary of the study and future directions.

II. BACKGROUND

This section provides the description of the problem and
our framework model designed to tackle the problem.

A. Problem Description

This study aims to accurately identify the type of the
network connections in their early stages by analyzing the
stream of packets. To formulate the problem, we employ
the general concept of connections and flows defined for
point-to-point communications. A connection consists of two
flows for bidirectional communication (e.g., client-to-server
and server-to-client directions). Let ¢; be a connection and C
the set of connections in a captured network trace. Then, the
size of flow set F is twice the corresponding connection set
size, i.e., |F| = 2 x |C]. A common way of representing a
flow (for early identification) is to associate it with a two-
dimensional vector containing the packet size and packet time
recorded for each packet within the flow, which has often been
considered as time series analysis for traffic classification [11].
For flow f, let b;(f) be the number of bytes of the j-
th packet and t;(f) be the inter-packet time between the
(j-1)-th and j-th packets (¢1(f) = 0). Let ¢ be the func-
tion that transforms a flow into this representation: ¥(f) =
(B (F)st1 (), s (b (F), £ (), for flow f consisting of 7
packets.

For attack types, suppose m attack classes under consid-
eration. A flow may either be a part of an attack connection

or have nothing to do with any of attack classes (referred
to as “background”). Let U be a set of different classes,
U = {A;|0 < i < m}, where A is a class for background
traffic while A; (j > 0) is an attack class. In other words,
a flow belongs to A; (0 < ¢ < m) depending on its class.
The identification function ¢(-) takes the input representation
of a flow ¢(f) and determines its class, i.e., po) : F — U.
We utilize standard metrics based on the confusion matrix,
including accuracy and F1 score, to measure the performance
of the identification function. For early identification, only the
first k packets in a flow are monitored. The goal is then to
maximize the identification performance while minimizing the
number of packets referenced.

B. Overview of the Proposed Framework

We present our framework designed for providing effective
packet stream analysis and early decisions for identifying
attack classes. The framework defines a set of functional
components to fulfill its mission, as illustrated in Figure 1.

e Data Gen creates normalized, labeled data instances by
combining the given packet traces and the associated
intrusion logs, which will be used for constructing the
learning model. Attack flows are labeled with their spe-
cific attack class, while the rest of the flows are labeled
as “Unlabeled”;

e Packet Stream Gen groups a stream of packets based
on the flow identifier information. The statistical packet
stream information from the predetermined number of
packets (k) on the same flow is measured and delivered
to Early Identifier;

e Pre-trainer is equipped to perform self-supervised learn-
ing, which helps initialize the neural network in a way to
stabilize the learning model from the impact by proba-
bilistic skewness and class imbalance. Note that the label
information is not referenced in the pre-training stage;

e Main Trainer learns the characteristics of individual
attack classes by referencing the annotated class label
information. The Pretrained model is loaded as the initial-
ization of the Main Trainer, and the labeled samples are
injected to construct the learning model for early attack
identification;

e Early Identifier performs the identification of attack
classes against the given data instance delivered from
Packet Stream Generator. The learning model built by
Main Trainer is loaded to this component for actual
decisions. The early decision is then made by classifying
each instance into one of the classes (4; € U).

Basically, there are two parts in the presented framework.
The data measurement part (Data Gen and Packet Stream Gen)
will be described in Section III. In fact, the ML part is the
core of the framework performing learning and decisions. As
mentioned, there would be several challenges for realizing
early decisions from potentially imperfect and unbalanced
network packet data. We will present two deep sequence mod-
els developed for addressing those challenges in Section IV.
The designed sequence-based models include a bidirectional
recurrent structure built upon long short-term memory (LSTM)
for resiliency against packet missing and reordering (designed

57

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 26,2023 at 06:24:43 UTC from IEEE Xplore. Restrictions apply.



/
7

Training (offline) B/G Self-supervised learning
Samples
Packet B/G Flows Pre-Trainer - » O
Trace (“Unlabeled”) ~
Data : > :
. Gen — H Done >—< ry == ‘
Intrusion R . Labeled 7 = :
Log E—— Main Trainer == > ;
Attack Flows s | i
AttackY |> Supervised learning n=D H
| Attack X } =t
\ 5
\ Samples _,;" @
. -~ 8 :

Identification (online)

| Captured packets
oo

Packet Early efanendt
Stream Stream stats Identifier
Gen ( k packets) l

A
i
‘ Attack Class u’

’
s

Fig. 1.
learning and classifying.

for Main Trainer), and a pre-training-enabled sequence-to-
sequence structure based on the autoencoding architecture for
stability from unbalanced class distributions (designed for Pre-
Trainer).

III. PACKET STREAM DATA CONSTRUCTION

To identify different classes of attacks, the availability
of annotated datasets (with the label information) would
be basically assumed for the unique representation of each
class. While public datasets, such as KDD Cup 1999 [12],
UNSW-NB15 dataset [6], and CIC-IDS2017 [7], extracted
from traffic traces have been exhaustively utilized for many
intrusion detection studies, those datasets basically contain
the information of flows that can be only collected after the
completion of communication. Hence, such datasets are rather
useful for postmortem analysis than for early detection of
ongoing malicious flows.

In this work, we construct a fine-grained packet-level dataset
including the size (in bytes) and time information of indi-
vidual packets (i.e., constructing v (f)) by combining pub-
lic traffic traces with corresponding intrusion detection logs.
Specifically, we utilize the real network traces and intrusion
logs collected from backbone links in Japan [13], [14]. The
traffic trace contains TCP/IP packet header information in a
pcap file, while the associated intrusion log is provided in a
comma-separated values (CSV) file with the attack information
inferred by multiple detectors. Each pcap file is a recording of
15-minute traffic collected on a specific day. A previous study
in [15] constructed network data by combining these traffic
traces and intrusion logs, but the resulting dataset contains
NetFlow-like statistical information made only available at
the connection release time. In this work, we construct packet
stream data to develop the function for the early identification
of network attacks.

Here, we describe the details about our data construction
process. Basically, the intrusion log contains the flow identi-
fication information (“5-tuple”), including the IP address pair,

Overview of the proposed framework for early attack identification, which analyzes packet streams using a time series-aware ML component for

TABLE I
ATTACK CLASS INFORMATION DEFINED IN THE INTRUSION LOG

Class Attack Prefixes
HTTP “alphfIHTTP”, “ptmpHTTP”, “mptpHTTP”, “ptm-
plaHTTP”, “mptplaHTTP”
Multi “ptmp”, “mptp”, “mptmp”
Alpha “alphfl”’,  “malphfl”, “salphfl”’, “point_to_point”,

“heavy_hitter”

IPv6_Tunnel  “ipv4gretun”, “ipv46tun”

Port scan “posca”, “ptpposca”

ICMP_scan “ntscIC”, “dntscIC”

UDP_scan “ntscUDP”, “ptpposcaUDP”

TCP_scan “ntscACK”, “ntscSYN”, “sntscSYN”, “ntscTCP”,
“ntscnull”, “ntscXmas”, “ntscFIN”, “dntscSYN”

DoS “DoS”, “distributed_dos”, “ptpDoS”, “sptpDoS”,
“DDoS”, “rflat”

source/destination port numbers, and the transport-layer pro-
tocol (e.g., TCP). The log also provides the attack class infor-
mation, including HTTP-relevant attacks (“HTTP”), heavy hit-
ter traffic (“Alpha”), point-to-multipoint anomalies (“Multi”),
denial-of-service attacks (“DoS”), port scanning (“PortScan”),
network scanning (“ICMPScan”, “TCPScan”, and “UDP-
Scan”), and tunneling behaviors (“IPv6Tunnel”) [14]. As can
be seen from Table I, a specific attack is categorized to one
of the attack classes based on its intrinsic characteristics.
Using the flow identifier, the traffic trace is combined with
the associated intrusion log. If the flow from the traffic trace
has a match to a log entry, then the flow is marked as an
attack with the class information (4; € U and i # 0) . If no
match is found, then the combining procedure falls back to
4-tuple (excluding the source port number information from
5-tuple) and performs the same combining task. In case of no
match again from the fall-back process, the flow is assumed
to be benign, and thus, background traffic (Ag € U). The
statistical packet stream information is then recorded with the
class information for each flow in the traffic trace. In this work,
we consider TCP flows only since it is safe to construct a flow
using connection management flags (e.g., a SYN packet for a
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TABLE 11
CONSTRUCTED DATASET WITH CLASS LABELS (09/01/2020-09/30/2020)

Class k=3 k=5 k=10 k=20
HTTP 5,006 3,639 2,502 2,208
Multi 19,478 12,410 6,236 2,866
Alpha 136,070 131,888 27,527 5,525
Port_scan 1 1 0 0
DoS 42 33 3 3
Unlabeled 17,963,835 13,252,563 4,075,647 940,004

new flow start).

Table II shows the extracted flow information from the 25-
day network traffic collected in September 2020, except five
days due to unavailability (3rd, 14th, 27th, 28th, and 29th).
In the table, we use the label of “Unlabeled” to indicate
background traffic (i.e., flows that have not been assigned to
any of the attack classes during the combining phase). From
the one-month trace, we observe a set of flows in five attack
classes in addition to background traffic, while there exists no
flow for the rest of the attack classes. Note that it is natural that
the number of flows decreases with greater £ values, because
there can be a subset of flows consisting of a small number
of packets only, and any flow with less than k packets should
be excluded from the collection.

Finally, the extracted data samples are pre-processed before
being fed to ML algorithms, which largely includes rescal-
ing and data normalization. In particular, we observed high
skewness from both the byte and inter-packet time fields. To
resolve this, in the rescaling process, a logarithm function was
applied to take the skewness of distributions into account.
Then, data normalization was performed with the min-max
scaling function. The constructed dataset (in Table II) is
publicly available online through https://github.com/dcstamuc/
PacketStreamDataCollection.

IV. METHODS — DEEP SEQUENCE MODELS

The primary goal of this study is to develop an effective
packet stream analysis tool that provides accurate early at-
tack identification from potentially incomplete, skewed packet
stream datasets with out-of-order sequences and unbalanced
class distributions. In this section, we first describe the
overview of deep learning for time series analysis, and then
present our deep sequence models designed for addressing
above challenges: (i) bidirectional long short-term memory
(LSTM) as an implementation of bidirectional recurrent struc-
ture, and (ii) sequence-to-sequence autoencoder as an imple-
mentation of pre-training-enabled sequence-to-sequence struc-
ture.

A. Deep Learning for Time Series Analysis

Considering a sequence of packets in a flow as the input
variable and an attack class as the target variable, we can
formulate the identification problem as a classification problem
in a supervised learning setting. In particular, we aim to learn
a function ¢g, which predicts the attack class given the first
k packets of a flow, A; = ¢o(¥x(f)), where O is a set of
model parameters to be learned; and 5 (-) maps to k tuples.

Among various forms of ¢g, we choose recurrent neural
networks (RNNs) because they are specifically designed for
processing time series data by utilizing shared and recurring
units [16]. At time index f, RNNs operate on an input z;
and update hidden states h; = (hgl), hEQ), ...) by applying a
recurring function,

ht = l{I\H\I(ZCf7 ht_l; C'_')RNN)a

where OrnN denotes the model parameters of RNN and
hy) denotes a hidden state at the /th RNN layer. For the
classification task, a classifier network takes (a part of) the
last hidden state hj,s; to make a prediction on a probability
distribution over a set of classes, i.e., p = c¢(Piast), Where
P = [po,...,Pm]" denotes a vector of probability masses,
each p; of which denotes the probability that the flow is
classified as the ith label; and c¢ is a classifier network with
a set of trainable parameters £. For a given p, the attack (or
background) class A; is determined by the index ¢ that satisfies
pi > p; forall j € {0,...,m}.

a) Long Short-Term Memory: As standard RNNs typi-
cally suffer from vanishing or exploding gradient problems
[17], modern RNN architectures such as LSTM [18] and
gated recurrent unit (GRU) [19] were proposed as gating
mechanisms to mitigate such problems by creating compu-
tational paths whose gradients do not vanish or explode for
a long period. In this study, we choose LSTM over GRU as
LSTM is known to be strictly more expressive, outperforming
GRU in many complex applications [20]. LSTM resolves
vanishing/exploding gradient problems by adding LSTM cells.
In addition to the standard RNN hidden states h;, LSTM
cells have a cell state s;, which is updated by an internal
recurrence and creates paths where the gradient can flow over
longer duration. Then the gating mechanisms control the flow
of information by employing three gates: input, output, and
forget gates. The input gate controls the extent to which new
input data is transferred to update s;, the output gate controls
the extent to which the LSTM cell output flows out to the
output (the hidden state), and the forget gate controls the
extent to which s; remains unchanged. The gating mechanisms
allow important information to last longer while forgetting less
significant information.

b) Bidirectional LSTM: In our task of the attack clas-
sification, the performance of the task depends not only on
understanding “causal” relationship of packets in the input
sequence, but also on extracting other useful features that
would otherwise be overlooked by only focusing on causality.
However, a regular LSTM only employs a past history to
extract features. To address this issue, bidirectional LSTM
[21] has been studied and has demonstrated its effectiveness
in many applications [22]. Thus, in this study, we consider the
bidirectional LSTM, which combines two LSTM architectures:
one moving forward from the beginning to the end of the
input sequence and the other moving backward from the end
to the beginning of the input sequence. With this architecture,
we anticipate that the model can handle a flow better even if
packets arrive out of order.

c) Training: As the classifier network is designed to
produce a probability that the input flow is categorized into
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Fig. 2. Seq2Seq autoencoder for self-supervised learning.

each class, the last component of the classifier is a softmax
layer, which turns its input vector o into the probability vector
p such that p; = exp(0;)/ ), exp(0;). Then, the model can
be trained by minimizing the cross-entropy loss:

Ntrain M

> uilog(pi),

j=1 i=0

Lcg = —
Ttrain

where y; € {0,1} is an indicator denoting if the index ¢ is
the correct classification, and ny,,in 1S the number of training
samples.

B. Self-supervised Learning

In many applications, the distribution of classes of interest
could be biased or skewed, and training a classifier directly
could fail to capture an underlying distribution correctly.
To mitigate this class imbalance issue, a training algorithm
that does not require the knowledge of class labels can be
employed to pre-train the classifier. As pointed out in the
state-of-the-art unsupervised learning study (contrastive-loss-
based models, e.g., [23]), a main purpose of unsupervised
learning is to pre-train a model, which is in turn fine-tuned
with supervised learning. We follow this approach in this
study.

a) Sequence-to-sequence autoencoder: Autoencoder is
a feed-forward neural network, which attempts to copy its
input sequence to its output sequence. We consider a type
of autoencoder, called sequence-to-sequence (Seq2Seq) au-
toencoder model, whose input and output are sequences. In
general, the Seq2Seq model consists of three parts: an encoder,
a decoder, and a context vector. To handle the sequence, the
encoder and the decoder are typically modeled as RNN-type
neural networks. The encoder processes an input sequence
and produces the context vector, which would contain the
most salient features of the input sequence. Figure 2 depicts
the network architecture of the Seq2Seq autoencoder model.
Internally, the multilayer perceptron (MLP) component inside
the encoder compresses the output of the LSTM to produce
the context vector projected in a lower-dimensional space, and
the other MLP at the decoder performs the decompression.

We now formally describe the Seq2Seq model. Specifically,
the model can be written in a form:

ij(.f) = gdec(genc (¢k(f) enc) @dec)y

where gene and gqec denote the encoder and the decoder,
respectively; Ocpc and Oge. denote the model parameters for
the encoder and the decoder, respectively; 15 (-) denotes the
reconstruction of 1 (+). The encoder takes the input sequence
and produces the context vector c:

¢ = Gene(Vr(f);

enc)

The decoder performs the reverse action of the encoder,

/l;k(f) = Gdec (C§ ®de0)7

where the output approximates the input ¢y (f) &~ ¥y (f).

b) Training: The goal of the training is to find sets of
model parameters (Ogpe, Odec) that minimize MSE between
the output sequence and the input sequence:

1 Mtrain

Z: ”¢k(f) - @k(f)Hz

Lyise =

Ntrain

Note that this approach can be categorized as self-supervised
learning, as it does not require additional labels for training,
except the input variable. Once the training of the Seq2Seq
autoencoder is finished, we take the network weights and
biases of the encoder as initial values of network weights
and biases of the LSTM network for the classification, i.e.,
ORNN = Oepc. After that, we continue training the LSTM net-
work to minimize the cross-entropy explained in Section IV-A.

V. EVALUATION

In this section, we share the evaluation results with our
observations and implications. We first describe the exper-
imental setting for compared models, data preparation, and
evaluation metrics. Then we report the experimental results,
which demonstrate the feasibility of our deep sequence models
for early decisions with improved performance compared to
the baseline models.

A. Experimental Setting

We evaluate a set of deep learning models for packet stream
analysis in the context of network attack identification. As
the baseline, we consider two neural network models: (i) an
MLP model that takes a vector containing the packet size
and time without the notion of time sequences (“MLP”) and
(ii) a unidirectional LSTM model widely applied for time
series analysis (“FWD”). As the realization of the proposed
models, we implement two deep sequence models: (iii) the
bidirectional LSTM model (“BI”) and (iv) the unidirectional
LSTM model pre-trained with Seq2Seq autoencoder (“SEQ”).
Note that we configure FWD with the identical neural network
architecture to SEQ, with the same level of optimizations for
fair comparison; hence, SEQ can be regarded as a pre-trained
version of FWD with self-supervised learning. For BI, we test
models with an additional fully-connected layer that produces
a hidden vector, which has the same size as the context vector.
Internally, we use ReLU for MLP and tanh for LSTM for
non-linear activation. For each ML model, we utilize check-
pointing to search a model instance with the greatest validation
accuracy over 1,000 epochs with the learning rate 1073,

As shown in Table II, the created dataset mainly contains
three attack classes (HTTP, Multi, and Alpha). We com-
posed the ML models to classify the traffic into four classes
(i.e., three attack classes and the background). For training,
min (10000, z) number of instances were randomly chosen
from each class pool, where x is the actual size of the pool.
Hence, the sampled dataset is intrinsically unbalanced with
less than or equal to 10,000 samples, particularly if & gets
larger. The validation set contains 200 instances for each
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TABLE IIT
BEST-PERFORMING CONFIGURATION FOR EACH MODEL (k = 5)

Model HLAYER CV  HDIM Fl Score FPR
MLP 3 - 40 0.937 0.13
FWD 3 - 40 0.945 0.07
BI 3 10 40 0.947 0.05
SEQ 3 10 20 0.948 0.08

class, and the testing set includes 100 instances per class. To
ensure no-overlap among training, validation, and test sets, the
validation and test samples had been drawn before composing
the training set.

To measure model performance, we basically refer to the
confusion matrix consisting of TP (True Positive), FP (False
Positive), FN (False Negative), and TN (True Negative). We
measure the identification performance using F1I score, since
the metric of accuracy may lead to a biased outcome under
a setting with unbalanced classes (same as our setting). The
metric of F1 score is defined as: F1 score = %,
and hence, the model performs better if the score is higher.
Since the attack identification is not a binary classification
problem, we calculate F1 score based on the number of
true instances for each class (i.e., Macro Avg. F1 score).
We additionally report false positive rate (FPR) defined as:
FPR = F;;%. In our setting, a false positive event refers
to a case where Unlabeled (Ap) is classified into one of the
attack classes ({4;]i # 0}).

B. Experimental Results

We first perform a fair comparison under the assumption of
the identical configuration setting for the number of hidden
layers (HLAYER) and the hidden dimension size (HDIM):
HLAYER=3 and HDIM=20. Additionally, we set the size of
context vector (or hidden vector) (CV) to three for BI and
SEQ as their default values (i.e., CV=3). We then report the
configuration of each model yielding the best F1 score with
the corresponding FPR. Finally, we analyze the performance
of BI and SEQ with different values for CV and HDIM.
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TABLE IV
PERFORMANCE (F1 SCORE) UNDER DIFFERENT CONFIGURATIONS
(bold=BEST, italic=BEST FOR THE OTHER MODEL)

Model k=3 k=5 k=10 k=20
BI(3,20) 0928 0935 0915 0.874
BI(5,20) 0935 0935 0908 0.878
BI(10,20) 0938 0945 0935 0.888
BI(3,40) 0948 0943 0930 0.910
BI(5,40) 0923 0935 0938 0.896
BI(10,40)  0.933 0.947 0923 0.883
SEQ(3.20) 0918 0937 0935 0872
SEQ(5.20) 0915 0947 0918  0.869
SEQ(10,20) 0915 0.948 0928  0.901
SEQ(3.40)  0.925 0943 0938 0.893
SEQ(540) 0915 0925 0906 0.893
SEQ(1040) 0915 0922 0916 0.866

Figure 3 shows the classification performance in F1 score
under the fair comparison setting. From the figure, we can see
that our deep sequence models (BI and SEQ) substantially
outperform MLP consistently across different k’s. Interest-
ingly, the unidirectional LSTM model (FWD) collapses to 0.1
when k=10, implying high sensitivity and instability of the
model when the sampled dataset gets more unbalanced. BI
and SEQ are capable of providing early identification of attack
flows with fairly acceptable performance even with three
packets (k=3), while monitoring the first five packets (k=5)
escalates the identification performance to 93.5% (BI) and
93.7% (SEQ). One interesting observation is that increasing
the number of packets (K > 10) does not help improve
the identification performance, which will be discussed in
Section V-C.

We next compare the best performance of the models. In
fact, we have performed extensive hyper-parameter-search on
a grid and here we report the results of the best configurations
with respect to F1 score when k=5 (as observed in Figure 3).
Table III provides the performance with F1 score and FPR
for each model. In the table, CV is not applicable for MLP
or FWD. The results show that SEQ is slightly better than
the others, while BI shows the lowest FPR. Although the
performance gap between the baseline models (MLP and
FWD) and our deep sequence models (BI and SEQ) is small
here, BI and SEQ perform more consistently, which is a crucial
factor in actual deployment.

Lastly, we provide further results for BI and SEQ under
different CV and HDIM settings. For the exposition purpose,
we name a model with a suffix of (CV, HDIM): for example,
BI(3,20) refers to the BI model with CV=3 and HDIM=20.
The results in Table IV suggest a room to optimize the models
with non-negligible improvements compared to the default
setting, i.e., (CV=3, HDIM=20). In the table, the bold-faced
result indicates the best performance among the entire settings
for a given k. We also italicize the best performance of the
other model for the comparison of the two models (i.e., BI
and SEQ). For example, BI(3,40) yields the best performance
(and bold-faced) when k£ = 3, while SEQ(3,40) works the best
among the SEQ settings (and italicized). Overall, BI(3,40)
performs consistently, yielding over 91% without any signif-
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TABLE V
SCORE WITH DIFFERENT DATASET CONFIGURATIONS (k=5): 1,000
SAMPLES FOR SET1 & SET3 AND 10,000 FOR SET2 & SET4

F

Week (09/01 — 09/07) | Month (09/01 — 09/30)
Model Setl Set2 Set3 Set4
BI(10,20) 0.913 0.968 0.947 0.945
SEQ(10,20) | 0.895 0.955 0.948 0.948

icant variations across different configurations. SEQ works
well by and large but shows some degraded performance with
the longest sequence (k=20), presumably due to the increased
complexity of the reconstruction.

C. Discussion

In Figure 3, we observed that increasing the number of
packets (k > 10) does not improve any identification per-
formance, which is somewhat counter-intuitive since mon-
itoring more packets could give further information about
the communication. Regarding this, we can get some clue
from previous studies. A pioneering study in [24] claims
that the first four packets of a TCP connection would be
sufficient to characterize network applications, and the authors
observed that monitoring more than four packets even results
in the degradation of identification performance. A recent
study in [25] also concludes that keeping track of more packets
does not help the prediction accuracy for traffic classification,
in which k ranged between 30 and 60.

Another interesting observation in our evaluation is the
impact of training samples on identification performance. As
described, we randomly sampled min(10000,2) number of
instances from each class pool for the evaluation (including
200 for validation and 100 for testing), where x is the actual
size of the pool. In Table V, we organize four different sets for
evaluating: Setl has 1,000 instances sampled and Set2 10,000
instances sampled from the first week, while Set3 has 1,000
samples and Set4 10,000 samples from the whole month. With
the week-long datasets (Setl and Set2), we can clearly see
the benefit of the increased training set size. In contrast, the
month-long setting does not give any progress even with the
larger dataset. One possible explanation is that using 10,000
instances would not be enough to capture the distribution
of data from the month-long pool, while that same number
would suffice for the relatively small week-long pool. This
would also be a reason why Set2 shows the better performance
than Set4. However, if we have to draw a less number of
instances (i.e., 1,000 samples for Setl and Set3), the result
shows that sampling from the whole month performs better;
presumably, it would be beneficial to choose samples from the
larger (month-long) pool if we have to choose only a small
number of instances. We observed almost the same patterns
from different BI and SEQ configurations. In fact, this study
limits the number of samples to 10,000 to keep computational
complexity manageable but evaluating the models with an
extensive set of data samples from a longer-term capture would
be interesting to better understand the impact of data quantity
and quality.

In this study, we consider the number of packets as the
criterion for the early attack identification. We note that this
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criterion is different from the wall-clock time and therefore
intervals between packets are not considered in the training.
It would be interesting to see if the integration of intervals in
the training would increase the identification performance.

VI. RELATED WORK

Intrusion detection is a typical second line of defense
mechanism, which can broadly be classified into two groups of
signature-based and anomaly-based approaches [8]. Conven-
tional intrusion detection tools, such as Snort (https://www.
snort.org/) and Zeek (https://zeek.org/), have the capability
of detecting unwanted connections in real time often using
textual byte patterns. Given the wider reliance on payload
encryption, however, those signature-based approaches would
be less attractive [8]. Moreover, there is an increase of privacy
disputes and legal regulations, and the payload inspection may
not be a valid option, particularly at a certain network point.

A body of studies investigated various ML approaches
for detecting anomalies from network traffic traces [3], [4].
Despite substantial improvement with brand-new methods,
anomaly detection is inherently limited to the binary decision
without providing information specific to attack classes. Addi-
tionally, existing studies largely rely on complete connection
information, which only becomes available after the communi-
cation is over. Several studies [26], [27], [7] focused on attack
identification (rather than anomaly detection); however, they
still rely on the full picture of connections without the early
identification feature.

Early detection has been a keyword for other application
domains as well such as traffic classification [25], [28], fake
news detection [29], and fraud detection [30]. Traffic clas-
sification is also a crucial function in network monitoring
and management for traffic engineering, resource provisioning,
Quality-of-Service (QoS) preservation, and security purposes.
Several studies tackled the problem of traffic classification
based on packet stream analysis, and hence, their proposed
method might provide the function of early classification of
network flows by referencing the first few packets. However,
traffic classification would be less impacted by out-of-order
packet sequences: for example, there is a clear distinction
on packet spacing patterns between loss-sensitive applications
(e.g., file transfer) vs. time-bounded applications (e.g., virtual
conferencing). Several studies, including [29], [30], [31], [32],
[33], [34], focused on fake news/rumor detection, with the goal
of minimizing the impact of adversarial events by detecting
them in the premature stage. Unlike our problem, however,
they do not need to consider the possibility of inconsistency
in data sequences owing to the assumption of posted messages
on social media with time stamps.

VII. CONCLUSION

This paper presented the design and evaluation of deep
sequence models designed for effective packet stream analysis
to achieve accurate identification of network attacks in a timely
manner. With the rationale of network dynamics (causing out-
of-order packet sequences) and class imbalance (resulting in
learning inconsistent representations), we designed two deep
sequence models based on a bidirectional structure (for the
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former concern) and a pre-training-enabled Seq2Seq structure
(for the latter concern). To evaluate the presented models,
we construct a packet-level dataset from month-long real
Internet backbone traces with the associated intrusion log
collection. Our experimental results support the feasibility of
the presented deep sequence models, showing up to 94.8%
(F1 score) for identifying three different attack types (with
one background traffic class). The results also suggest that
monitoring the first five packets (k=5) would suffice, enabling
timely responses against network threats while the connection
is still active and in progress.

There are several directions for further investigations. We
examined the two deep sequence models independently, but
ultimately the models would be combined to expect a syn-
ergistic benefit, which will be the next step of this study.
We also plan to evaluate the presented models with other
packet traces publicly accessible with the associated ground
truth attack information (e.g., UNSW-NB15 collected on a
simulated setting) for extensive analysis and optimizations.
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