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VirusTotal (VT) is a widely used scanning service for researchers and practitioners to label malicious entities
and predict new security threats. Unfortunately, it is little known to the end-users how VT URL scanners decide
on the maliciousness of entities and the attack types they are involved in (e.g., phishing or malware-hosting
websites). In this paper, we conduct a systematic comparative study on VT URL scanners’ behavior for different
attack types of malicious URLs, in terms of 1) detection specialties, 2) stability, 3) correlations between scanners,
and 4) lead/lag behaviors. Our findings highlight that the VT scanners commonly disagree with each other on
their detection and attack type classification, leading to challenges in ascertaining the maliciousness of a URL
and taking prompt mitigation actions according to different attack types. This motivates us to present a new
highly accurate classifier that helps correctly identify the attack types of malicious URLs at the early stage.
This in turn assists practitioners in performing better threat aggregation and choosing proper mitigation
actions for different attack types.
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1 INTRODUCTION
VirusTotal (VT) is one of the most popular and influential online scanning services to detect and
categorize malicious entities, including binaries and URLs. VT aggregates scanning results (i.e., a
detection result and the category of malicious entity such as phishing and malware-hosting) from
up to 95 various detection scanners and provides the security research community (academia and
industry) with the aggregated results. These results are heavily utilized to label malicious entities
and predict new security threats [10, 11, 24, 33, 44, 46, 49].

One of the best strategies for the security community to mitigate attacks and/or remedial actions
is to promptly and accurately identify the types of attacks [10]. Unfortunately, the scanners in the VT
perform as a black box. In other words, it is little known to the security community (i.e., the VT end-
users) how the VT scanners decide on the maliciousness of entities and what specific attack types
are (e.g., phishing or malware-hosting). Moreover, it commonly occurs that the VT scanners disagree
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Table 1. Key differences between our work and prior work analyzing VT. Only our work provides (1) a large-
scale measurement for various types of malicious data, (2) insights both on scanners’ detection and attack
type labels, and (3) an attack type classifier to help choose proper mitigation actions for different attack types.

Work Mal. Data Type1 Data Diversity2 # Mal. Data3 VT Labels Used4 Measurement5 Classifier6

Alex Kantchelian et al. [18] Windows Malware ◗ - ◗ ◗ Benign or Malicious
Zhu et al. [56] Obfuscated PE malware ◗ 120 ◗ ◗ ✖
Peng et al. [35] IRS/Paypal Phishing ◗ 36 ◗ ◗ ✖
Salem et al. [42] Android Malware ◗ 24 K ◗ ◗ Benign or Malicious
Bouwman et al. [7] Covid-19 Domains ◗ 188 K ◗ ◗ ✖
van Liebergen et al. [50] Malware ◗ - ◗ ◗ ✖
Thirumuruganathan et al. [47] Various Types ● 2.7 M ◗ ✖ Benign or Malicious

Our work Various Types ● 1,577 M ● ● Attack type
1: Malicious data type used in each paper. 2: Diversity of the data type. 3: The malicious dataset size. 4: VT labels studied and utilized in each paper.
5: Whether any measurement study is done in the paper. 6: Proposed classifier. −: Unknown, not specified the number of malicious data
✖: 5 no measurement, 6 no classifier ◗: 2 only a specific data type, 4 scanners’ detection labels only, 5 scanners’ detection labels only
●: 2 various data types 4 scanners’ detection and attack type labels, 5 scanners’ detection and attack type labels

with each other on their detection labels and attack type classification [35, 46, 56]. Such uncertainty
aboutmalicious entity classifications canmake it challenging for the security community (i.e., the VT
end-users) to have better security decisions and accurate predictions of new threats. This is because it
is a typical practice in the industry to assign different severity levels for different attack types, priori-
tize actions based on the severity, and choose propermitigating actions for different attack types [34].
For example, when a website is infected with malware, an initial remediation action is to check for
file integrity and malicious code injections; when a website is compromised with a phishing page, an
initial task is to identify pages or folders that are created recently and contain login/payment forms.
While prior work has attempted to address the challenges, they are limited in scale and di-

versity [7, 18, 35, 41, 42, 56]. Table 1 summarizes a comparison of our work with the prior work
analyzing VT reports. Specifically, they often focus on the detection trends for specific types of enti-
ties: malware binaries [18, 41, 42, 56], IRS/Paypal phishing URLs [35], or COVID-19 related malicious
domains [7], and there has been limited attention to identifying the attack types. Previous work also
focuses more on malware binaries than malicious URLs. This is because analyzing URLs is signifi-
cantly more challenging than analyzing malware, as URLs exhibit dynamic behaviors. For example,
even though a specific URL address does not change, its purposes and contents could dynamically
change over time (e.g., compromised and cleaned), which results in more challenges in analyzing
malicious URLs thanmalware binaries. Consequently, it necessitates a longitudinal study of VT scan-
ners specifically for malicious URLs to answer four key research questions: 1) How do VT scanners
behave for URLs? 2) What are the limitations of current detection and attack type labeling approaches
using VT? 3) Do VT scanners behave differently for URLs of different attack types? 4) How to identify
attack types of URLs from VT reports and what is the realistic distribution of different URL types?
To answer these research questions, we analyze all the VT URL reports (of 1.58 billion distinct

URLs) generated from July 2019 to Jan. 2022 (30 months). We study various characteristics in
URL scan reports, such as the attack types of URLs (Section 4.1), scanners’ detection specialty
(Section 4.2), the stability (Section 4.3), and correlation of individual scanners (Section 4.4), and
lead/lag behavior (Section 4.5). To the best of our knowledge, this is the first work of a large-scale,
in-depth analysis of VT URL scan reports and the first systematic comparative study for different
attack types of malicious URLs.
From our large-scale measurement study, we make the following useful observations. 1) Con-

flicting attack type labels are common in individual scanners temporally and across scanners;
specifically, the labels of the phishing URLs disagree more than the ones of malware URLs. 2)
Scanners specialize in different attack types, and no scanner performs well for all types of URLs.
3) The set and level of highly correlated scanners differ depending on attack types. 4) Scanners
detecting phishing URLs are more correlated than those detecting malware URLs. 5) Fewer scanners
correlate in their attack type labels. 6) Lead/lag relationships exist, and the set of leaders differs
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depending on the attack types. 7) Using our highly accurate attack type classifier, we show malware
URLs consistently dominate phishing URLs observed in VT over time. We provide an overview
of our key findings and takeaways in Section 2.

Our contributions are summarized as the following:

• We collect large-scale VirusTotal reports for malicious URLs for 30 months and conduct a
longitudinal study. We summarize and highlight our key findings in Section 2.

• We characterize VirusTotal scanners with an emphasis on scanners’ specialty, stability, attack
type classification, correlations, and lead/lag relationships with regard to different attack types.

• We propose an attack type classifier that takes scanners’ correlations and specialties to identify
the attack type of malicious URLs. Our approach achieves high accuracy compared to the baseline
approaches. We apply the trained models to study the attack types reported in VirusTotal and
show the realistic distribution of malware and phishing URLs.

• We provide practical suggestions using VirusTotal to compile better malicious ground truth
considering attack types and characteristics of scanners.

2 OUR KEY FINDINGS
Before presenting the details of our study, we summarize our key observations in this section.
Observation 1: Conflicting Attack Type Labels. We show that conflicting attack type labels
for a given URL are common, and it is due to two cases: individual VT scanners’ temporal conflicts
and cross-scanner conflicts (Section 4.3 and Section 4.1), although contents located in the URL did
not change. While previous studies discussed the conflicting detection labels [35, 56], our finding
further provides insights on attack type labels. We generally observe that phishing URLs have more
conflicting labels than malware URLs. Given such conflicts, it imposes challenges for practition-
ers to choose the proper mitigation actions that depend on attack types. We thus emphasize the
importance of identifying attack types to collect reliable corresponding ground truth. In line with
it, we propose a method to quickly identify attack types given the conflicting labels (Section 5).
Using the correctly identified attack type labels, we show that malware URLs dominate more than
phishing URLs in VT. We suggest that practitioners utilize our classifier to quickly build reliable
ground truth and choose the proper actions for different attack types.
Observation 2: Scanners’ Specialty and Detection Performance. We confirm that scanners
specialize in different attack types, and no scanner performs well for all types of URLs. Almost half
of the scanners never detect specific types of attacks due to their specialties. We observe that almost
half of the scanners never detect specific types of attacks due to their specialties (Section 4.2). While
previous studies focused on each scanner’s detection accuracy on one type of entity (e.g., obfuscated
malware files [56], android malware [42], IRS/PayPal phishing domains [35], and COVID-19 related
threats [7]), we focus on how scanners perform for different attack types. For example, we observe
AegisLab WebGuard performs well in detecting malware URLs, whereas Bitdefender performs well
in detecting phishing URLs. Also, similar to previous studies on malware files [18, 56], we observe
that scanners often work poorly in the early reports when URLs first appear in VT and their label
stabilizes over time. However, we observe that scanners reach the maximum F-1 score relatively
early for URLs (near the 5th day in our dataset since their first appearance in VT), compared to
2 ∼ 4 weeks reported in previous studies on malware files or IRS/Paypal phishing URLs [18, 35].
This supports our suggestion that an independent analysis for URL reports is needed to derive the
optimal time period for groundtruth collection. Finally, we observe that the performance of scanners
detecting phishing URLs is less consistent than those detecting malware URLs. We recommend
that practitioners collect the URL groundtruth set earlier than files (e.g., around the 5th day since
their first appearance), while practitioners utilize our analysis and classifier to mitigate the effect
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of unreliable and conflicting VT results. We suggest that practitioners choose a higher threshold
for phishing URLs to mitigate the effect of less consistent performance of scanners.
Observation 3: Scanners’ Correlation on Detection and Attack Types Classification. Some
scanners are highly correlated in terms of their detection, attack type labels, temporal label sim-
ilarity, and trends of label patterns (Section 4.4). Previous work focused only on the detection
correlations, including label flipping patterns [56] or overlapping sets between blocklists [13].
However, detection correlation does not necessarily mean that scanners are indeed correlated if
their attack labels are different. Instead, we measure the correlation in various aspects with regard to
attack types. Specifically, we observe that the set and number of highly correlated scanners are dif-
ferent depending on attack types. Also, we observe that scanners detecting phishing URLs are more
correlated than those detecting malware URLs. Finally, fewer scanners correlate in terms of their la-
bels on attack types than detection itself. Concretely, 27% of scanners that detect phishing URLs and
5% of scanners that detect malware URLs have a high correlation on co-detected URLs; while only
3% of scanners that detect phishing URLs and 3% of scanners that detect malware URLs have a high
correlation on attack label assignments for given URLs. We suggest that, instead of directly using
positive counts, practitioners utilize our analysis of scanner correlations for different attack types
and proportionally weigh less the counts from correlated scanners to obtain better ground truth.
Observation 4. Lead/Lag Relationships among Scanners for Each Attack Type. Lead/lag
relationships exist among highly correlated scanners for each attack type (Section 4.5). For example,
Webroot and alphaMountain.ai have a high correlation for phishing URLs, while Webroot always
detects earlier than alphaMountain.ai. Meanwhile, the set of leaders is different depending on the
attack types (e.g., the top 5 leaders are Sophos, OpenPhish, PhishLabs, Netcraft, and Segasec for
phishing URLs; Kaspersky, Fortinet, Webroot, Sophos, Segasec for malware URLs). Early detection
is important due to the short-liveness nature of malicious URLs. We recommend that researchers
utilize our analysis of specialty, correlation, and lead/lag relationships to choose a set of scanners
to form groundtruth of URLs with a specific attack type.

3 DATA COLLECTION AND PRELIMINARIES
This section describes our dataset and the terminologies used throughout the paper. We collect
two types of datasets: (1) VirusTotal (VT) Feed and (2) Ground Truth URL and Corresponding VT
Report Dataset. We collect VT Feed to study the characteristics of VT scan reports and individual
VT scanners’ behaviors for URLs in the wild; Ground Truth set to study those for URLs with regard
to different attack types. Table 2 summarizes our dataset.

3.1 VirusTotal (VT) Feed

VirusTotal (VT) is an aggregation service that interacts with 95 scanners and aggregates their scan-
ning results (i.e., detection and attack type labels) for URLs queried by users. VT provides a feed of
scan reports for all URLs queried by all users to premium VT service subscribers. We collect the scan
reports for all URLs submitted to VT from Jul. 2019 to Jan. 2022 (30 months) through the subscription.
Each scan report contains the aggregated results of up to 95 URL scanners listed in Appendix A1. 5
million unique scan reports, including benign and malicious ones, are generated daily on average.
VT Report Fields. We are interested in the following fields in each scan report: ‘url’, ‘scan_date’,
‘first_seen’, ‘scan_id’, ‘positives’, ‘Response content SHA-256’, and ‘scans’. The field ‘scans’ contains
the name of the scanners, and two subfields: ‘detected’ (whether a URL is malicious or not according
to the scanner) and ‘result’ (the attack type indicated by the scanner, such as malicious, phishing,
malware, suspicious, mining, not recommended, and spam sites). The ‘scan_id’ represents a unique
1Each URL is not always scanned by the same set of scanners.
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Table 2. Summary of our collected dataset. (For all URLs, we use all VirusTotal scan reports between 07/2019
- 01/2022)

Type # URLs* URL Collection Period

VT General Feed 1,577 M Jul. 2019 – Jan. 2022
(30 months)Fresh Feed 224 M

G
round

Truth

Manual GT Benign 421 Aug. 30 2020 – Sep. 3 2020
& Oct. 10, 2021Malicious 352

Phishing
APWG 9,186 Apr. 20, 2021
SiteAdivsor 6,237 Mar. 1, 2021
SiteAdivsor 763 Jul. 30, 2021

Malware
APWG 223 Apr. 20, 2021
SiteAdivsor 5,823 Mar. 1, 2021
SiteAdivsor 658 Jul. 30, 2021

*Distinct URLs. Each distinct URL has multiple scan reports over our study period.

scan ID number. When a URL is submitted to VT for scanning, VT checks if the URL has already
been scanned before. If a URL has been scanned before, VT either 1) simply returns the previous
scan report with the same ‘scan_id’ or 2) rescans the URL and produces an updated scan report
with a new ‘scan_id’. We observe that VT returns previous reports when the URLs were recently
scanned unless the user explicitly requests to rescan. Because multiple duplicated reports with
the same ‘scan_id’ can lead to biased results, we only extract distinct scan reports with a unique
‘scan_id’. The field ‘positives’ is the number of scanners that detect a particular URL as malicious.
The field ‘Response content SHA-256’ is the SHA-256 hash of contents (such as html or files) located
in the URL at the scan date. An example VT report is in Appendix B and the detailed information
for fields in a VT report is in [51, 52].
VT General Feed. VT Feed has approximately 1 or 2 million distinct scan reports each day where
a URL is marked as malicious by at least one scanner. As we focus on malicious URLs in this study,
we filter out the URLs that have been never marked as malicious by any VT scanners during our
study period, which gives us 1,577 million (1.57B) URLs along with their scan reports over time.
VT Fresh Feed. To better understand how VT reacts to URLs over time [56], we further extract only
VT fresh URLs from VT General Feed that are first observed and scanned during our observation
period, which is called VT Fresh Feed. In other words, we collect only URLs whose first_seen is later
than our first observation time (𝑓 𝑖𝑟𝑠𝑡_𝑠𝑒𝑒𝑛 ≥ Jul. 1st, 2019). Finally, we obtain 224 million URLs
along with their scan reports over time.

3.2 Ground Truth URL and Their VT Report Dataset Collection

To analyze VT scanners’ behaviorwith regard to different attack types, we first collect groundtruth
URLs (Section 3.2.1) and corresponding periodic VT reports (Section 3.2.2).

3.2.1 Ground Truth URL Collection
We build 3 groundtruth URL datasets as follows. We first build Manual GT URLs by manually
labeling URLs sampled from VT Fresh Feed (Section 3.2.1 (1)). To avoid bias on URL sets and
evaluations, we additionally collect and manually label malicious URLs from two public intelligence
sources that are not included in the list of VT scanners: Anti-Phishing Working Group (APWG)
(Section 3.2.1 (2)) and SiteAdvisor (Section 3.2.1 (3)).
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Fig. 1. The ratio of top 4 detailed labels for VT Fresh.

Figure 1 presents the ratio of the top 4 detailed labels over the total number of scan results for
VT Fresh. The figure shows that the non-generic attack types of most malicious URLs in VT are
either phishing or malware. We thus focus on phishing and malware ground truth.
(1) Manually Labeled URLs (Manual GT URLs). We collect Fresh URLs first scanned at the
groundtruth collection date, then choose the sample URLs using a stratified sampling-based ap-
proach [5, 19] that helps better reflect the realistic data distribution. Then, domain expertsmanually
labeled the URLs as follows. The experts label a URL as malicious if it has any malware signals (e.g.,
malware is hosted in the URL) or phishing signals (e.g., a squatting domain [30], or mimicking popu-
lar websites – for example, malicious.com with the login image of paypal.com [35]). A URL is consid-
ered benign when the URL has neither malware nor phishing signals, and has been in operation for
more than 3 months [46] as malicious URLs are highly unlikely to survive more than 3 months [20].

Following previous studies [46, 47], all URLs are labeled by two experts, and URLs with conflicting
labels are excluded for better confidence in labeling quality. The experts repeatedly checked the
same set of URLs for 3 days to check content changes over time, then we continue to automatically
check the content changes using the hash contents collected from VT. The detailed process is
described in Appendix C. 773 URLs (Benign: 421, Malicious: 352) are successfully labelled after
filtering URLs that have conflicts between two experts, whose contents have changed over time, or
that have neither malicious nor benign signals. We use the benign URLs in this dataset as benign
ground truth for our analyses.
(2) Anti-PhishingWorking Group (APWG) URLs. APWG is a community-based service where
the URLs are labeled by domain experts from multiple institutions [2]. We collect the latest 10K
URLs from APWG and filter out invalid URLs (e.g., malformed URLs) and non-fresh URLs (i.e., the
URL’s first appearance timestamp in VT (first-seen) is older than our data collection period). Attack
types of URLs are manually labelled following the same process as our Manual GT URL collection
(Section 3.2.1 (1)). This results in 9K phishing and 223 malware URLs.
(3) McAfee SiteAdvisor URLs. McAfee SiteAdvisor (SA) is a service providing reputation reports
for URLs [27]. In addition to detailed comments, SA reports include an attack category and one
of the four risk levels: unverified, low, medium, and high-risk. We employ detailed SA threat reports
assisting in manual labeling the attack types of URLs along with the same rubric in Section 3.2.1 (1).
Concretely, we collect random samples of URLs from VT Fresh Feed to manually label their attack
types with guidance from SA. As being interested in malicious URLs, we choose URLs having at
least one phishing or malware label in VT and SAmedium and high-risk. This results in 7K phishing
and 6.5K malware URLs altogether. The data collection is split between two timestamps, where 90%
of them are collected in Mar. 2021 and the remaining 10% in Jul. 2021.

3.2.2 VT Reports Collection for Ground Truth URLs
In practice, it is crucial to detect short-lived malicious URLs as early as possible for their threats to
be quickly contained. To fully understand the behaviors of each scanner and URLs, we track scan
reports from the very first appearance of URLs in VT and study scanners’ behavior over time. To do
so, after collecting the groundtruth URL datasets, we take two approaches: 1) submit the URLs to
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Fig. 2. Virustotal reports collection workflow

VT and request to rescan them periodically (prospective study); and 2) conduct a retrospective
study to extract reports for the URLs from VT General Feed. Figure 2 illustrates the workflow of
our data collection.

A few factors need to be considered when selecting the proper time granularity for building the
periodic reports. First, the status of malicious URLs changes rapidly. They could be taken down
after attacks [11], cleaned after being compromised [46], or re-registered after take-down to reuse
for new attacks [53]. Recent research suggests that only a few malicious URLs have a lifetime of
more than a month [20], while most malicious URLs have a few days or even a few hours [20, 31].
Second, it has been shown that even though a scanner may update its malicious URL list shortly
after detection of new malicious URLs [32], VT does not necessarily promptly update the scanner’s
result in its database [35]. We collect periodic reports daily and hourly based on these observations
and our empirical analysis.

3.3 Terminologies and Notations

Note that each distinct URL may have multiple scan reports over our study period. We sort the
scan reports by timestamp (i.e., scan_date) for each URL and represent the data per scanner as a
time series (i.e., a sequence of chronologically ordered data points). Each data point corresponds to
the scanner’s label of the URL for a given time frame. To see the long-term trend of scanners and
URLs, we present results using the daily time granularity throughout the paper.
Labels. We use two types of labels for each time frame: a binary label (detected field in VT reports)
and a detailed label (result field in VT reports). A binary label indicates whether or not a scanner
detects a URL as malicious, encoded as 1 or 0; a detailed label means an attack type label assigned
by scanners such as “malware site” and “phishing site”.
If there are multiple scan reports in a day, we assume the scanner detected a URL as malicious

as long as it detected at least once within a day (i.e., the scanner’s binary label at the day is 1).
We observe that although a scanner may have both 0 and 1 for binary labels within a day, reports
with “1” as binary labels have a single detailed label per scanner within a day. We thus use it as the
detailed label for that day.
Notation. For a given scanner 𝑠 and a URL 𝑢, its time series is represented as a binary sequence
𝐵𝐿𝑠,𝑢 = [𝑏𝑙𝑡1 , 𝑏𝑙𝑡2 , ..𝑏𝑙𝑡𝑛 ] or a detailed label sequence 𝐷𝐿𝑠,𝑢 = [𝑑𝑙𝑡1 , 𝑑𝑙𝑡2 , ..𝑑𝑙𝑡𝑛 ] where 𝑡𝑖 is the 𝑖𝑡ℎ time
frame, 𝑏𝑙𝑡𝑖 ∈ {0, 1}, and 𝑑𝑙𝑡𝑖 ∈ { 0, “phishing sites”, “malicious sites”, “malware sites”, “suspicious
sites”, “spam sites”, “mining sites”, “not recommended sites” }.
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Fig. 3. The statistics of detailed labels (attack types) for each URL set

4 MEASUREMENT STUDY ON VIRUSTOTAL
4.1 Analysis of Attack Type

Recall that each VT scanner assigns an attack type (i.e., detailed label) for a malicious URL. This
section characterizes attack types assigned by scanners for each URL set based on the detailed labels.
Figure 3(a) shows the CDFs (i.e., the portion of URLs) (y-axis) of the number of the detailed

labels (x-axis) for each URL set. Figure 3(b) shows the ratio of the top 4 detailed labels over the
total number of scan reports. Each bar presents a detailed label, the x-axis presents URL sets, and
the y-axis presents the ratio of each detailed label. Both figures clearly show the different trends.
That is, phishing URLs tend to have more different labels than malware URLs. Specifically, 75% of
phishing URLs have 3 or more, but only 25% of the malware URLs have 3 or more labels (Figure 3(a)).
While 78.5% of labels for malware URLs are malware, only 45% of labels for phishing URLs are
phishing (Figure 3(b)). This means that given the conflicting labels, especially for phishing URLs,
it would be hard to assign one attack type to the URL.
We observe two cases where a URL has multiple detailed labels. First, different scanners assign

different detailed labels to the same URL. Specifically, 84.3% of URLs with multi-labels are due to this
case. For example, http://faceasdasdasd.000xxxxxxxxxx[redacted].com/ is always marked as “phish-
ing” by AegisLab, Fortinet, Kaspersky, Phishtank, Avira, CLEAN MX, Phishing Database, ESET,
OpenPhish, G-Data, Emsisoft, and Google Safe Browsing; as “malware” by Sophos, BitDefender,
and SCUMWARE.org; and as “malicious” by AlienVault, CRDF, Netcraft, CyRadar, and Forcepoint
ThreatSeeker. One possible reason is that scanners often have their detection specialties. In Sec-
tion 4.2, we analyze scanners’ specialty. Second, some scanners change their detailed labels for the
same URL. We observe that 15.7% of URLs with multi-labels are due to such scanners quickly switch-
ing their detailed labels. In Section 4.3, we will study individual scanners’ conflicting labels more in
detail and show that 50% of scanners have URLs for which they keep changing the detailed labels.
Takeaway. There largely exist conflicting detailed labels for given URLs due to two cases: individual
scanners’ temporal and cross-scanner conflicts. Also, phishing URLs tend to have more conflicting
labels than malware URLs. Given such conflicting labels, assigning one type of attack would be
challenging. We analyze individual scanners’ behavior in assigning attack types in more detail in
Section 4.3 and propose a method to assign a final attack type given such conflicts in Section 5.

4.2 VT Scanners’ Detection Specialties

This section aims to answer our research question: Do VT scanners behave differently for different
types of URLs? We study scanners’ detection specialties by measuring scanners’ detection perfor-
mance for different types of URLs. Recall that we have three ground-truth dataset described in
Section 3.2: (1) manually labeled URLs (manual GT) including malicious and benign URLs, (2) phish-
ing URLs (Phishing), and (3) malware URLs (Malware). Detection Specialty is defined as a certain
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Fig. 4. F-1 score trends of top 5 scanners over daily timestamp for each ground truth

type of entity in which the scanner is specialized for detection. For instance, the scanner’s detection
specialty is phishing when it is capable of specifically detecting phishing attacks, not malware URLs.
We, particularly, focus on whether or not the scanner properly detects the groundtruth URLs

as malicious and use the F-1 score ( 2×precision×recallprecision + recall ) to accommodate the unbalanced datasets [39].
Recall that we collect the periodic scan reports for the groundtruth URLs and represent the scanner’s
labels for a URL over time as a time series (Section 3.3). We compute each scanner’s F-1 score on each
day given the groundtruth URLs. Figure 4 shows each scanner’s F-1 score (the y-axis) trends over
30 days (the x-axis). We only show the top 5 scanners based on their maximum F-1 score for clarity.

We find the four interesting observations. First, no scanner performs well for all URL types, and
thus the top 5 scanners are different for different URL types. For example, BitDefender works well
for phishing URLs but poorly on malware URLs. In fact, 51%, 40%, and 57% of scanners cannot detect
phishing, malware, and malicious manual GT URLs (i.e., 0 true positives), due to their specialties,
respectively. For example, malware scanners such as Malware Domain Blocklist, malwares.com
URL checker, and Malwared never detect phishing URLs in our dataset. Second, scanners often
perform poorly in the early reports in VT. In general, we observe that top 5 scanners reach the
maximum F-1 score near the 5th day since the first appearance in VT, which is relatively earlier
than scanners’ behavior for malware files (2 ∼ 4 weeks reported in previous studies [18, 35]). Third,
there are scanners that do not change their label once they detect certain types of URLs, resulting
in continuously high F-1 scores (e.g., ESET, CyRadar, Netcraft, Kaspersky, Avira in Figure 4(a),
BitDefender in Figure 4(b), and AegisLab in Figure 4(c)). Finally, top scanners for phishing URLs
(Figure 4(b)) have relatively lower F-1 scores than top scanners for malware URLs (Figure 4(c))).
Moreover, the F-1 scores of top scanners for phishing URLs (Figure 4(b)) are less consistent over
time than the F-1 scores of top scanners for malware URLs (Figure 4(c))). For example, one of
the top scanners for phishing URLs, CRDF, quickly reaches its maximum F-1 score, and then the
score continuously decreases. This is because scanners have more conflicting labels over time for
phishing URLs than for malware URLs, as discussed in Section 4.1.

Note that a scanner consistently having high F-1 scores may not necessarily be a good scanner,
if the status of URLs changes (e.g., compromised and cleaned). Indeed, we observe scanners not
changing their decision about some URLs that are once detected then become NX (non-existent). For
example, bstange.alinaalexandrovxxxxxxx[redacted].ro in VT Fresh becomes NXURL but 2 scanners
such as Fortinet and Webroot still mark it as “phishing” or “malicious”. However, as mentioned in
Section 3.2, we build our groundtruth with URLs whose contents did not change for 30 days. There-
fore, we argue that Figure 4 provides a reliable analysis of scanners’ actual detection performance.
Takeaway. Scanners specialize in different attack types. Threshold-based approaches without
considering such specialties may result in less accurate groundtruth. Further, scanners perform
poorly in the early reports and reach the maximum F-1 score relatively earlier for URLs than for
malware files. Finally, scanners’ detection performances are relatively less consistent for phishing
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Fig. 5. Scanner label certainty scores for phishing and malware URLs

URLs than for malware URLs. In Section 6, we provide recommendations on how VT users take
these phenomena into account to build a better groundtruth set.

4.3 VT Scanners’ Label Stability

In Section 4.2, we observe the F-1 scores change over time, indicating that the scanners change
their labels for given URLs. This motivates us to study the stability of binary and detailed labels
of scanners. Specifically, we measure the stability of scanners’ labels for malicious URLs by two
certainty scores: binary and detailed label certainty scores. A binary label certainty (BLCertainty) is
defined as how certain a scanner is about its detection (i.e., malicious or benign); a detailed label cer-
tainty (DLCertainty) is defined as how certain a scanner is about its detailed label (i.e., an attack type).
Binary Label Certainty (BLCertainty). A binary label certainty of scanner 𝑠 for URL 𝑢 measures
how much time 𝑠 labels 𝑢 as malicious over time. For example, assume that 𝑠 has 4 reports for
two URLs, 𝑢1 and 𝑢2 where 𝑠’s binary sequences are 𝐵𝐿𝑠,𝑢1 = [0, 1, 1, 0] and 𝐵𝐿𝑠,𝑢2 = [0, 1, 1, 1],
respectively. Then, the binary label certainties of 𝑠 for 𝑢1 and 𝑢2 is 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑏 (𝑠,𝑢1) = 0.5 and
𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑏 (𝑠,𝑢2) = 0.75, respectively. Then, the binary label certainty score, BLCertainty, of 𝑠 is
computed as the average of binary label certainties for all URLs, i.e., BLCertainty(s) = (0.5+0.75)/2 =
0.625.
Detailed Label Certainty (DLCertainty). A detailed label certainty of scanner 𝑠 for URL 𝑢

measures whether 𝑠 constantly gives the same detailed label over time. Essentially, the most certain
label of 𝑠 for 𝑢 will be the most common label given by 𝑠 to 𝑢. We thus extract 𝑠’s most common
label for 𝑢 and compute a detailed label certainty as the ratio of occurrences of most common
labels over time. For example, assume 𝑠’s detailed label sequence for 𝑢2 is 𝐷𝐿𝑠,𝑢2 = [0, phishing,
malware,malware]. Its most common label is “malware” and it appears twice in 4 time periods,
and thus the detailed label certainty 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑑 (𝑠,𝑢2) is 2/4 = 0.5. If 𝑠 always gives the same detailed
label, 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑑 (𝑠,𝑢) will be the same as 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑏 (𝑠,𝑢). Similar to BLCertainty, the detailed label
certainty score, DLCertainty, of 𝑠 is computed as the average of detailed label certainties for all URLs.
Results. Figure 5 shows the CDFs (i.e., the portion of scanners) (y-axis) of two label certainty
scores (x-axis) of all scanners for different types of URLs. Essentially, the line in the left side means
that there are more scanners with lower label certainty scores. We generally observe that scanners
have lower DLCertainty than BLCertainty. This means that although a scanner have relatively
stable binary labels for URLs, it changes detailed labels over time (i.e., assigning different attack
types to a given URL).

To deeper understand scanners’ detailed label stability, we further measure the number of detailed
labels for each URL per scanner. Figure 6 shows the distribution for the number of detailed labels
per scanner (only scanners having URLs with more than 1 label are shown). The x-axis represents
the set of scanners. Each bar represents the number of detailed labels. The y-axis represents the
ratio of URLs that scanners assign the corresponding number of detailed labels.
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Fig. 6. The distribution for the number of detailed labels per scanner (only scanners having URLs with more
than 1 label are shown)

Figure 6 shows that 49 scanners assign multiple attack types to at least one of the URL sets;
some scanners even assign 4 attack types to the same URL. For example, Spamhaus assigns 4 attack
types to 3.9% of VT Fresh URLs (Figure 6(a)) and a few phishing URLs (not visible in the figure)
(Figure 6(c)). Figure 6 shows that scanners considered highly reputable in the literature such as
Sophos, Bitdefender, and Kaspersky [3, 48, 56] also assign multiple attack types to given URLs.
For example, Sophos assigns at least 2 attack types to 85% of VT Fresh URLs (Figure 6(a)), 50% of
phishing URLs (Figure 6(c)), and 2% of malware URLs (Figure 6(d)). This suggests that although
using only highly reputable scanners may increase detection accuracy, assigning an attack type
to a URL would still be challenging.

Interestingly, we observe different behavior of scanners assigning multiple types of attacks to the
same URL. Concretely, 53% of scanners constantly change their detailed label from one to another in
the beginning, and then stabilize with one type of attack. For example, Sophos switches its label ev-
ery day for “jp-billxxxxxx[redacted].com” between “malware” and “phishing”; then later it stabilizes
as “phishing”. Meanwhile, 47% of scanners never stabilize their labels. For example, Fortinet keeps
changing its label between “phishing” and “malware” for “wikixxxx[redacted].cz/wiki/ [redacted].”
Takeaway. Scanners often change their binary and detailed labels for the same set of URLs.
Moreover, scanners are less “certain” about the attack types (DLCertainty) than the maliciousness
itself (BLCertainty) leading to challenges in deciding an attack type for given URLs. Given these
different scanners’ behavior, we propose a method to assign a final attack type to each URL at a
given time point in Section 5.

4.4 VT Scanners’ Correlation

One may take scanners consistently having high F-1 and certainty scores as reputable for each
attack type and choose thresholds or determine the attack type considering only such reputable
scanners [56]. However, this section shows there exist highly correlated scanners in terms of both
binary and detailed labels that may degrade threshold-based approaches for detection and produce
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Fig. 7. Frobenius norm of Jaccard similarity of scanner’s binary/detail labels over time

a bias for a majority voting-based approach for attack type detection. We analyze the pairwise
correlation among scanners using two similarity measures: Jaccard similarity [17] and dynamic
time warping (DTW) [6].
Scanners’ Co-labeled URL Similarity. To measure the similarity in terms of co-labeled URLs,
we employ Jaccard similarity for binary and detailed labels at each time point as well as over time.
Specifically, we measure Jaccard similarity for binary labels by the number of co-detected URLs
over the total number of URLs; Jaccard similarity for detailed labels by the number of URLs having
the same detailed labels over the total number of URLs. For example, when the set of total URLs is
𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, scanner 𝑠1 detected 𝑢1, 𝑢2, 𝑢3, and scanner 𝑠2 detected 𝑢2, 𝑢3, 𝑢4, 𝑢5, then the Jaccard
similarity for a binary label is 2/5. Although 𝑠1 and 𝑠2 co-detected 𝑢2 and 𝑢3, 𝑠1 and 𝑠2 may have
different detailed labels. And if 𝑑𝑙 (𝑠1, 𝑢2)=“malware”, 𝑑𝑙 (𝑠1, 𝑢3) = “malware”, 𝑑𝑙 (𝑠2, 𝑢2)=“malware”,
and 𝑑𝑙 (𝑠2, 𝑢3) = “phishing”, the Jaccard similarity for a detailed label is 1/5 due to their different
detailed labels for 𝑢3.
We present the heatmaps of pairwise Jaccard’s similarity of binary and detailed labels over

all periods in Appendix D. Scanners co-detecting URLs with at least one scanner are shown in
the heatmaps. A darker cell in the heatmap means high similarity, while a lighter cell means low
similarity.We also compute the Frobenius norm [15] of the pairwise Jaccard similarity matrix at each
time point to measure if the similarity is consistent over time. Figure 7 shows how the Frobenius
norm (y-axis) changes over 30 days (x-axis). The larger norm indicates that there are more highly
similar scanners in terms of detection (binary labels) or attack type assignment (detailed labels).

In general, we observe that more scanners have high Jaccard similarity for phishing URLs (more
darker cells in heatmaps and the larger norm in Figure 7) than for malware URLs. Also, the Jaccard
similarity of detailed labels is lower in general (lighter in heatmaps and the lower norm in Figure 7).
Meanwhile, we observe a few scanners having high Jaccard similarity for detailed labels (the
darkest) such as ESTsecurity and Scantitan for phishing URLs.
Figure 7(a) shows that for phishing URLs, there are more scanners having high similarity for

binary labels in the beginning, then continuously the norm decreases over time. One possible
reason is that shortly after detecting the phishing URLs, some scanners gradually change their label
to benign, resulting in less similarity. Furthermore, while there are fewer scanners having high
similarity for malware URLs, the norm is relatively consistent over time. We also observe fewer
scanners having high similarity for detailed labels (and thus low norm such as 0.0036 compared to
norm of 10 for binary labels) and the consistent norm.

Scanners may have high similarities due to multiple reasons. If a scanner copies others directly
(e.g., a scanner uses a blacklist provided by another scanner [1]), the simple threshold-based ap-
proaches will be biased and unreliable. Meanwhile, scanners having high similarity in detection,
albeit their independent methods, may indicate high confidence in detection so that the higher
positive counts provide stronger signals. Scanners having high binary label similarity yet low
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detailed label similarity suggest that such scanners may have independent approaches (inspecting
different signals from URLs), and thus one may treat the positive counts from such scanners as the
level of maliciousness. Meanwhile, scanners having both high binary and detailed label similarities
suggest high correlations, and thus one may penalize the count accordingly.
Scanners’ Labeling Trend Similarity. If one scanner copies another, or two scanners share
similar (if not the same) features, their label trends should be similar. If one scanner copies another,
the copied version’s detection would be delayed with the same label trend. We thus further compare
scanners’ labeling patterns. To measure the similarity of scanners’ binary labels’ patterns, we
employ dynamic time warping (DTW) distance that computes the similarity between two temporal
sequences [6]. Essentially, DTW distance can measure if the evolution of labels is similar regardless
of their speed. To get the final DTW distance between two scanners, we measure the DTW distance
of all pair sequences for co-detected URLs and then compute the average.
We run a hierarchical clustering algorithm based on DTW distance and cut the dendrograms

(Figure 18 in Appendix D) by the level. Figure 8 shows the resulting clusters for phishing and
malware URLs. Note that we do not consider two scanners similar when both do not detect the
URL at all over time.
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Fig. 8. Scanner clustering using DTW distance

Figure 8 suggests two observations. First, different clusters are built for different types of URLs.
For example, for phishing URLs (Figure 8(a)), G-Data is closely clustered with Google Safe Browsing
(GSB), but it is closely clustered with CLEAN MX for malware URLs (Figure 8(b)). Second, scanners
specialized in the same attack type get clustered together. That is, the phishing scanners (e.g.,
PhishTank, PhishLabs, and Phishing Database) clustered for phishing URLs (Figure 8(a)) and
the malware scanners (e.g., MalwarePatrol and Malsilo) clustered for malware URLs. Figure 8(b))
confirm that our clustering method indeed captures meaningful clusters. Meanwhile, such clustered
scanners (i.e., having highly similar trends of binary labels) suggest that some scanners may not be
independent (e.g., one may refer to and utilize another scanner’s labels and do delayed detection
compared to another with a similar labeling trend) for a URL.
Scanners’ Causal Relationship. We further examine the potential causal relationships between
correlated scanners using a popular causality measure for time-series data, Transfer Entropy
(TE) [25, 45]. Let 𝑆1 be scanner 𝑠1’s detailed label time-series sequence and 𝑆2 be scanner 𝑠2’s
detailed label time-series sequence for a URL 𝑢. TE from 𝑆1 to 𝑆2 (𝑇𝐸 (𝑆1 → 𝑆2)) quantifies how
likely 𝑠1’s label change will influence 𝑠2’s label change, which is defined as follows.

𝑇𝐸 (𝑆1 → 𝑆2) = 𝐻 (𝑆2𝑖 , 𝑆1𝑖−lag, . . . , 𝑆1𝑖−1) − 𝐻 (𝑆2𝑖 |𝑆1𝑖−lag, . . . , 𝑆1𝑖−1),
where 𝑆1𝑖 and 𝑆2𝑖 are the detailed labels of 𝑠1 and 𝑠2 at time 𝑖 respectively, 𝑙𝑎𝑔 is the chosen time lag,
and 𝐻 (·) represents entropy. Essentially, a larger positive TE value indicates a stronger influence
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of 𝑠1’s labeling trends on 𝑠2’s labeling trends. We compute 𝑇𝐸 (𝑆1 → 𝑆2) for all common URLs
between 𝑆1 and 𝑆2 and average the TE value to represent a causal relationship between 𝑠1 and 𝑠2.
To better understand the influence between correlated scanners, we build a causal relationship
graph (Figure 9) where scanners are nodes and a directed edge from scanner 𝑠1 to scanner 𝑠2 is
drawn, and the thickness (weight) of the edge represents the average TE value.

 

 

 

(a) Phishing

.

.

.

 

(b) Malware

Fig. 9. Scanners’ Causal Relationship Graph (Scanners having > 0.5 labelling similarity are only shown)

CLEAN MX is known to submit many URLs to Phishtank and refer to Phishtank’s decision [36],
which is captured by our causal influence graph (Figure 9(a)). It is interesting to see that Comodo
Valkyrie Verdict highly influences other scanners in the same cluster (e.g., CRDF, Dr.Web,
Forcepoint, Emsisoft) for malware URLs (Figure 9(b)). BitDefender and CyRadar are influenced
by only Webroot, resulting in having a high correlation and getting clustered for malware URLs
( Figure 18).
Takeaway.We observe highly correlated scanners in terms of their temporal similarity and the
overall similarity in the trend of their label patterns. Scanners may have high correlations due to two
reasons: scanners’ specialty in the same attack type albeit their independent methods and causally
related scanners (one referring to other detection methods [1, 36]). One may prefer scanners always
detecting URLs earlier than others among those highly correlated ones. In the next section, we
thus analyze if lead/lag relationships between scanners exist.

4.5 Lead & Lag Analysis

As malicious URLs are often short-lived, it is crucial to detect URLs as early as possible. In Sec-
tion 4.4, we observe highly correlated scanners in terms of the co-labeled URLs (Jaccard similarity)
and the patterns of binary label trends (DTW distance). In this section, we analyze if there is any
lead/lag relationship among those correlated scanners. For example, if scanners 𝑠1 and 𝑠2 detect the
same set of URLs yet the 𝑠1 always detects URLs earlier than 𝑠2, we may fairly say 𝑠1 is a leader and
𝑠2 is a lagger. We thus compare the first detection time of two scanners for co-detected URLs.

Figure 10 presents the pairwise early detection ratio matrices for phishing and malware URLs
measured by the number of URLs that the first scanner (the y-axis) detected earlier than the second
scanner over the total number of co-detected URLs. The matrix is sorted so that the darkest row is at
the bottom. If there are no co-detected URLs, it is marked as xxx. Note that a scanner that does not co-
detect URLswith any scanner will not appear in thematrix. Essentially, a completely dark rowmeans
that the corresponding row scanner always detects earlier than other scanners; a completely dark
column indicates that the corresponding column scanner always detects later than other scanners.
First, as shown in Figure 10, we observe scanners detect relatively earlier than others (e.g.,

Segasec) and scanners detect relatively later than others (e.g., alphaMountain.ai). Second, we ob-
serve closely clustered scanners (i.e., the label trend is highly similar) where one always detects URLs
earlier than another for a specific type of URLs. For example, while Webroot and alphaMountain.ai
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Fig. 10. Early detection ratio of 1st scanner being earlier than 2nd scanner (sorted by the darkness of rows)

have similar labeling patterns (and thus closely clustered) for phishing URLs (Figure 8(a)), Webroot
always detects URLs earlier than alphaMountain.ai (Figure 10(a)). Then, one may prefer Webroot
over alphaMountain.ai for phishing URLs. Third, while MalSilo do not co-detect many URLs
with other scanners (i.e., most cells are xxx), it mostly detects earlier than other scanners among
those co-detected URLs. This suggests that MalSilo may employ an independent method that can
compensate for other scanners’ detection.
Meanwhile, we observe there are more scanners detecting the same set of phishing URLs than

those detecting the same set of malware URLs (i.e., Figure 10(a) has fewer cells with xxx than
Figure 10(b)). Further, more lead/lag relationships exist in phishing URLs than malware URLs (i.e.,
Figure 10(a) has more darker cells than Figure 10(b)). This means the approaches detecting malware
URLs are more likely to be independent of other scanners than approaches detecting phishing URLs.
Takeaway. There exist lead/lag relationships among scanners having similar label patterns. Mean-
while, more scanners are correlated to detect phishing URLs than malware URLs. Along with the
results in previous sections, one may consider leading and highly accurate scanners’ results while
penalizing the positive counts.

5 ATTACK TYPE DETECTION MODELING
Identifying if a malicious URL is involved in phishing or malware attacks is important in practice as
these two attacks require different mitigation actions and malicious URLs are aggregated to threat-
specific feeds [13]. As examined in Section 4, scanners often do not agree on a single attack type
label. Hence, the commonly used majority voting based approach and VT label classifier utilizing
VT labels as features, our baselines, are sub-optimal (see Table 4). The majority voting approach
assigns the label of the majority class as the label of each URL. The VT label classifier directly
uses the VT labels from the VT reports for the URLs as features for the classification. Thus, both
baseline approaches do not consider scanner verdict conflicts and correlations. Instead, one needs
an approach to account for scanners’ dependencies and varying expertise. To this end, one approach
is to learn a set of latent variables for each scanner from a large corpus of historical VT reports,
capturing the scanner dependencies and expertise. Utilizing these latent variables along with
other commonly available features from prior work, we construct a supervised learner to classify
malicious URLs, which achieves 10-45% classification performance improvement over the baseline.
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Fig. 11. Overall workflow of classifying malicious URLs as phishing or malware

Our Approach. Figure 11 shows the overall classification pipeline of our approach. Our analysis
in Section 4.4 shows that scanners are highly correlated in terms of both detailed and binary labels.
Further, scanners detecting phishing and malware URLs form distinct clusters. Motivated by these
observations, first, we cluster similar scanners together based on the latent variables we derive.
Along with the VT cluster features, we then utilize three groups of features: lexical, hosting, and
WHOIS. Lexical features refer to the textual features related to URLs [26]. Phishing URLs are more
likely to have lexical features impersonating popular brands than malware ones. Hosting features,
capturing the differences in the hosting infrastructures utilized for these two types of attacks, extract
attributes related to the IP addresses where URLs are hosted [26].WHOIS features are extracted from
WHOIS registration records for each domain [14]. The coverage of hosting and WHOIS features are
75% and 71% respectively. Table 3 shows a summary of the features used for each category, lexical,
hosting and WHOIS. VT cluster features include scanner attack labels and the features derived from
scanner clusters. Latent scanner features are derived from the factor analysis on randomly selected
20K recent historical VT reports with at least two positives. We use the detailed and binary labels
of the scanners in each report as input features to the factor analysis. Our intuition is that these
features capture scanner dependencies and varying degrees of expertise. We take the top 5 factors
and cluster scanners into multiple groups. We vary the number of clusters from 5 to 20 and identify
that 15 clusters produce the best downstream performance. Utilizing these clusters, we extract
VT cluster features taking the scanner cluster assignment as the input and computing adjusted
phishing and malware label proportions for each malicious URL. We observe that the adjusted
label proportions perform better in the downstream classification task compared to the raw label
proportions. A key reason for the significant performance gain is due to, as we have shown earlier,
dependencies among scanners and highly correlated results at times. The adjusted label proportions
consider these dependencies and compute more discriminative features to differentiate between
phishing and malware URLs. Figure 11 shows the overall classification pipeline of our approach.
Model Training and Testing. To build our model, we use balanced datasets from each class col-
lected on Mar. 1, 2021 – phishing and malware URLs – described in Section 3 where 5,823 URLs from
each class are used. We train MLP (Multi-Layer Perceptron), XGBoost, Random Forest (RF), Support
Vector Machine, K Nearest Neighbor, Decision Tree, Naive Bayes, Logistic Regression and Linear
Discriminant Analysis. RF yields the best result and hence all the experiments are performed with
RF. Randomized search based hyperparameter optimization identifies the optimal maximum depth
to be 250, a maximum number of features to be 55, the number of estimators to be 200. We utilize 80-
20 train-test split and Figure 12 shows the ROC curve for the two classes. Table 4 shows the offline
performance metrics for the baseline models and our approach. The two baseline models utilized
are as follows: majority voting and VT label classifier, a RF classifier that uses VT labels as features.
While the two baseline models perform poorly, our model achieves a high accuracy, precision, recall
and a low false positive rate for each class in general. We attribute the performance improvement
to the inclusion of latent scanner features along with lexical, hosting and WHOIS features.
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Table 3. Summary of the features used
Feature Name Description Type

Hosting Features
Duration The time interval from the first seen to the last seen records for a domain Numerical
Number of IPs The number of IPs on which the domain is recently hosted Numerical
Number of ASNs The number of Autonomous System Numbers associated with the IP Numerical
Number of queries The number of times the domain is queried Numerical
Number of name servers The number of authoritative name servers used to lookup the domain Numerical
Name server match Does at least one authoritative NS domain match with the domain name? Boolean
Number of SOAs Number of SOA (Start of Authority) domains associated with the domain Numerical
SOA match Does at least one SOA domain matches with the domain name? Boolean
Number of domains per IP The average number of domains hosted on all hosting IPs of a domain Numerical

Lexical Features
Entropy The Shannon entropy of the domain Numerical
Number of popular brands The number of popular brands that appear in malicious domains. Numerical
The position of the first brand The position of the first brand appearing the domain name Numerical
Domain length Length of the domain name Numerical
Number of subdomains Number of subdomains in the domain name Numerical
Number of dashes Number of dashes in the domain name Numerical
Number of suspicious words The number of suspicious words such as login, register, and secure that

appear in the domain name.
Numerical

Is a generic TLD present Is a generic TLD such as -com-, -org- and -net- present? Boolean
Is IDN Is it an internationalized domain name? Boolean
Is IP Is it an IP hostname, where the hostname is an IP address? Boolean
Is suspicious TLD Is the TLD of the domain in the list of TLDs with a low reputation? Boolean

WHOIS Features
Duration The life time of the domain from the creation to the expiration date Numerical
Renewed Is the domain renewed after it was initially registered? Boolean
Registrar The name of the domain registrar Categorical
Number of name servers The number of name servers mentioned in the WHOIS record Numerical
Status The server status of the WHOIS record Categorical
Is privacy protected Is the domain registration privacy protected? Boolean

Table 4. Attack type classification performance of the baselines and our approach.

Type
Baseline1* (Majority Voting) Baseline2+ (VT Label Classifier) Our Approach

Acc. Prec. Rec. FPR Acc. Prec. Rec. FPR Acc. Prec. Rec. FPR

Phishing 81.72 69.90 92.98 25.43 94.04 89.33 92.54 5.24 97.47 95.45 96.91 2.3
Malware 70.10 51.59 19.93 8.12 90.24 88.13 83.58 6.10 96.34 95.93 93.30 2.1

We utilize the second set of ground truth URLs collected on Jul. 30, 2021 to test the trained
model to ascertain its performance over a period of time. It contains 763 phishing and 658 malware
URLs. We observe that the prediction performance degrades only less than 1% over the 4 month
apart trained model and the test set. We attribute the stable performance of the model over time
to temporally agnostic features utilized.
Error Analysis. We analyze all the misclassified URLs. For the total of 13 malware URLs misclas-
sified as phishing URLs (e.g. support-beleid.xyz) and the total of 10 phishing URLs misclassified
as malware URLs (e.g. ug62ud8jtox9jw.buzz), we observe that their average confidence scores are
0.64 and 0.68, respectively, which are quite close to the default threshold of 0.5. By increasing
the classification threshold, one may reduce the misclassifications at the expense of reducing the
true positive rate. For each misclassified sample, we investigate the importance of its features in
classification using SHAP explainer. We observe that misclassified phishing URLs lack telltale lexical
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Fig. 12. ROC Curves for Attack Types
Table 5. Performance of the attack type classification for different feature categories.

Feature Sets Phishing Malware

Acc. Prec. Rec. FPR Acc. Prec. Rec. FPR

VT cluster labels 95.49 92.83 93.60 3.6 94.42 93.09 90.47 3.5
VT cluster labels + lexical 96.38 93.82 95.25 3.1 95.26 93.84 92.10 2.6
VT cluster labels + hosting 96.98 94.73 96.17 2.6 95.27 94.25 91.83 2.9
VT cluster labels + whois 96.91 94.91 95.78 2.5 95.71 94.85 92.48 2.6
VT cluster labels + lexical + hosting 97.21 95.24 96.35 2.4 95.67 94.65 92.53 2.7

All (Our approach) 97.47 95.45 96.91 2.3 96.34 95.93 93.30 2.1

features such as the presence of a popular name, the inclusion of a TLD name in the domain name,
and use of suspicious keywords. The SHAP analysis of misclassified URLs suggest that having
additional features (e.g. certificate features based on the TLS certificates issued for the domains of
these URLs, content features extracted from the HTML content of the webpages for these URLs)
may assist further distinguish phishing from malware URLs.
Ablation Analysis. As shown in Table 5, we analyze the performance with respect to different
feature categories. We experiment lexical, hosting and WHOIS features separately along with VT
cluster features. While the performance improves around 1% in each of these scenarios compared
to only utilizing VT cluster features, 2-3% improvement when all feature categories are considered.
This indicates that each feature category helps learn different aspects of phishing and malware
URLs. Oftentimes, collecting WHOIS records for domains is quite challenging. In such a situation,
we recommend utilizing only lexical and hosting features with only slightly dropped performance
(0.3%) compared to having WHOIS features.
Feature Analysis. In addition to VT cluster features and VT labels from some of the scanners, we
observe the following features to be important for the classification: renewed (whois), duration
(hosting), domain length (lexical), number of suspicious keywords (lexical), number of popular
brands (lexical), registrar (whois), number of SOA domains (hosting), number of name servers
(hosting) and number of queries (hosting). This shows that different feature categories contribute
to a strong classifier, which is inline with the findings from the ablation analysis above.
Longitudinal Results. We apply our classifier on 56,138 VT malicious URLs randomly chosen
from VT General Feed between Mar. 2021 and Jul. 2021. Our predictions show that 11,922 and
44,216 are phishing and malware, respectively. Figure 13 shows the weekly percentage of these two

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 59. Publication date: December 2023.



A Large Scale Study and Classification of VirusTotal Reports on Phishing and Malware URLs 59:19

Malware
Phishing

%
 o

f A
tta

ck
 T

yp
es

0

20

40

60

80

100

Date

03-01
03-07

03-14
03-21

03-28
04-01

04-07
04-14

04-21
04-28

05-07
05-14

05-21
05-28

06-07
06-14

06-21
06-28

07-07
07-14

07-21
07-28

Fig. 13. Attack types proportions observed in VT General Feed over time

attack types over the 4 months. The relative proportions of these attacks have been quite stable in
this quarter and the malware URLs consistently dominate phishing URLs observed in VT over time.

6 DISCUSSION

Recommendation on the usage of VT. Our studies have several important implications in using
VT to build a ground truth. Based on our studies, we provide the following recommendations on
how to better utilize VT to build groundtruth sets. (1) Our studies show that identifying attack types
of URLs is an important consideration in building a ground truth using VT. VT users should employ
our proposed classifier to identify an attack type with high accuracy at the early stage and attempt
to build individual groundtruth depending on the attack type. (2) VT users should collect the URL
groundtruth set earlier than files (e.g., around the 5th day since their first appearance, compared
to 2 weeks for files). (3) VT users should utilize our analysis of scanner specialties and prioritize
detection labels by top scanners for a specific attack type instead of using VT positive directly or
hand-picked reputable scanners [56] to determine the level of maliciousness [8] (Section 4.2). (4) VT
users should utilize our analysis of scanner correlations for different attack types and proportionally
weigh less the VT positive counts from correlated scanners to obtain better ground truth instead of
directly using VT positive and a fixed threshold for all types of URLs. (5) VT users should use a
higher threshold to compile phishing URL ground truth compared to malware URL ground truth,
given the higher correlation between scanners and their less consistent performance for phishing
URLs (Section 4.4) (6) VT users should utilize our analysis of lead/lag relationship and prioritize
highly accurate leading scanners to build the most accurate and reliable ground truth at the early
stage (Section 4.5). We also have recommendations for a VT service provider and individual VT
scanners. (1) VT may take advantage of our analysis and attempt to provide a better global metric
(e.g., weighted positive count) along with the aggregated information. (2) VT may provide users
more information about individual scanners, such as scanner specialties, for users to quickly refer
to results from specialized scanners to build groundtruth sets for a specific attack type. (3) VT may
continue to monitor the performance of scanners utilizing our analysis and proactively interact
with individual scanners. For example, VT may notify scanners about their potential problem in
detection, such as false positive cases or delayed detection. Individual scanners must quickly correct
such problems, improve their method, and immediately update their results with VT.
Limitation on Ground truth. Collecting large-scale, ground-truth URLs is often challenging [13].
Despite our best efforts to cover various types of attacks on the ground truth, our dataset may still
have two limitations. First, two external sources in our ground truth dataset may have a certain
bias on their URL lists. However, for better confidence in the ground truth, considering noises in
2 external sources, we take the conservative approach of the additional manual verification (e.g.,
excluding the URLs that domain experts have disagreed on labeling from ground truth). Second,
while it is relatively easy to judge if a URL is phishing/non-phishing and malware/non-malware, it
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is hard to judge if the URL is benign by human experts. Hence, our manual GT benign URLs can be
biased towards popular domains. In future work, we will study VT with less popular benign URLs.

7 RELATEDWORK

VT as Ground Truth. VT has been used to build a ground truth in various domains including
malware files [21, 23, 55] and IP/URLs [24, 28, 33, 44, 49] detection. In doing so, the most common
approach is an unweighted threshold-based method employing a heuristically chosen number
of scanners by which the entity is marked as malicious. While there is no consensus on such
a number [54, 56], surprisingly, small thresholds such as 1 or 2 have been widely used in the
literature [28, 44, 49, 54, 56]. Only a few papers set aggressive thresholds [21, 55]. Small thresholds
often lead to high false positives [33] and high thresholds often result in low coverage [11, 35, 56].
A few studies treat the number of detecting scanners as the level of maliciousness [8, 11]. However,
we show that the absolute number does not necessarily mean the level of maliciousness due to
high correlations between scanners.
Threat Intelligence Aggregation. A number of recent studies measured the qualities of multiple
threat intelligence sources including VT [7, 9, 12, 13, 22, 24, 31, 35, 37, 40–42, 50, 56]. Particularly,
their work mainly focused on evaluating the stability (e.g., detection label dynamics) of VT malware
file scanners and the detection accuracy of VT phishing URL scanners for IRS/paypal phishing
URLs [7, 9, 22, 35, 50, 56]. While these researches provided insights about detection qualities of
intelligent sources, their works were conducted with limited datasets (or a single snapshot of
reports) in terms of diversity and scale [9, 16, 29, 35, 40, 43]. In contrast, we provide a large-scale
longitudinal analysis for various types of URLs. In doing so, we analyze the specialty of scanners and
their correlations for different attack types and propose a method to identify attack types of URLs.

A few studies proposed ways to aggregate different sources considering qualities [16, 18, 29, 38,
40, 43, 47]. Kantchelian et al. [18] proposed two machine learning models with the assumption that
scanners are independent. However, we show that some scanners are highly correlated and cannot
be considered independent. Sakib et al. [40] and Thirumuruganathan et al. [47] proposed ways to
optimally combine malware scanners and general threat intelligence sources, respectively, with con-
sideration of dependencies between scanners. However, Sakib et al.’s work cannot be applied when
the ground truth is built depending solely on VT, as it violates their key assumption (i.e., scanners’
detection probabilities are given). We also show each scanner’s detection probability can vary over
time and for different attack types due to its detecting specialty. Thirumuruganathan et al.’s method
clustered URLs into benign or malicious by integrating noisy scan reports without such assump-
tion [47]. However, they did not provide a systematic quantitative study on the characteristics of
scan reports, which is one of our main focuses. We also show that the attack type of malicious URLs
is an important factor when building ground truth, and propose a method to classify the attack types.

8 CONCLUSIONS
In this paper, we provide a large-scale analysis of VT URL scan reports spanning over two years. We
show that existing approaches to determining the maliciousness and attack types are limited due to
multiple factors including conflicts between scanners, and the specialty, stability, correlation, and
lead/lag behavior of scanners. Our analyses show that scanners behave differently for different attack
types and identifying an attack type is critical in building proper groundtruth sets using VT. We pro-
pose an approach considering such characteristics to identify the attack type of a malicious URL. We
suggest that VT users first need to quickly and reliably identify attack types of malicious URLs, de-
pending on which, VT users need to build groundtruth sets for corresponding attack types consider-
ing VT scanners’ behavior with regard to a specific attack type and choose proper mitigation actions.
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APPENDIX
A LIST OF VIRUSTOTAL SCANNERS IN DATASET
Abusix, ADMINUSLabs, AICC (MONITORAPP), Alexa, AlienVault, alphaMountain.ai, Antiy-AVL,
Armis, AutoShun, Avira, BADWARE.INFO, Baidu-International, BenkowCC, BforeAi, BitDefender,
Blueliv, Certego, CINS, CMC Threat Intelligence, CRDF, C-SIRT, CLEAN MX, Comodo Valkyrie Ver-
dict, Cyan Digital Security, CyberCrime, CyRadar, desenmascara.me, DNS8, Dr.Web, EmergingTh-
reats, Emsisoft, ESET, ESTsecurity, Forcepoint ThreatSeeker, Feodo Tracker, FraudSense, Fortinet,
G-Data, Google Safebrowsing (GSB), GreenSnow, IPSum, Hoplite Industries, Lumu, K7AntiVirus,
Lionic, Kaspersky, MalBeacon, Malekal, Malsilo, Malware Domain Blocklist, Malware Domain List,
MalwarePatrol, Malwarebytes hpHosts, Malwared, Malwares.com, Netcraft, NotMining, OpenPhish,
Palevo Tracker, Phishlabs, Phishtank, Prebytes, Quickheal, Quttera, Rising, Sangfor, SafeToOpen,
Scantitan, SCUMWARE.org, SecureBrain, Sophos, Spam404, SpyEye Tracker, Spamhaus, StopBad-
ware, Sucuri SiteCheck, ThreatHive, Trend Micro Site Safety Center, Trustwave, urlQuery, Virusdie
External Site Scan, VX Vault, Web Security Guard, Wepawet, Yandex Safebrowsing, Zeus Tracker,
Zvelo, Botvrij.eu, Artists Against 419, Nucleon, Ransomware Tracker, URLhaus,Webroot, ZeroCERT,
securolytics

B VIRUSTOTAL REPORT EXAMPLE

"url": "example.com", "scan_date": "2021-04-30 23:00:17", "positives": 3, "scan_id": "454..312"
"first_seen": "2021-04-30 23:00:17", "Response content SHA-256": "d5a89...62a3",
"scans": {"VT scanner1": {"detected": true, "result": "malicious site"}, "VT scanner2": {"de-
tected": true, "result": "malicious site"}, "VT scanner3": {"detected": true, "result": "malware
site"}, "VT scanner4": {"detected": false, "result": "clean site"}, "VT scanner5": {"detected": false,
"result": "clean site"},....., "VT scanner95": {"detected": false, "result": "clean site"}}

C MANUAL GT URL COLLECTION AND MANUAL LABELING PROCESS
To collect the set of URLs for Manual GT, we choose the fresh URL samples using a stratification
sampling approach proposed in [5] and [19]. In doing so, we consider multiple dimensions of strata
such as VT positive count and popularity (the number of VT rescan queries made in the first_seen
date). The URLs are then manually labeled by 5 domain experts immediately. Specifically, experts
individually visit the set of URLs using multiple browsers including Chrome, Opera, Firefox, and
Safari, and manually classify the attack types. To achieve better confidence in labeling, all URLs
are labeled by two experts and exclude URLs with conflicting labels. If the URL is NX, the URL is
filtered from the list of URLs to analyze. If the URL is not NX, experts classify the type of URLs
with the rules including the following.
• Check the URL address, forms, brand logos, redirections to identify phishing URLs.
• Check for associated files hosted in the URL to identify malware URLs. Download the file and
check if the file is malware or not. In doing so, we perform the similar process to [56] and we also
check the file against multiple Anti-virus engines including Sophos and McAfee desktop engine.

• Check if popular brand names or their variants being present in the URL address.
• Check the screenshots saved in the historical databases such as Internet Wayback Machine and
urlscan.io.

• Check the detailed threat report by OTX [4] and McAfee WebAdvisor [27].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 59. Publication date: December 2023.



59:24 Euijin Choo et al.

• If none of the above malicious indicators of compromise are present for a URL and the URL has
been operational for at least 3 months, we mark the URL as benign.

• If the landing page is legitimate (e.g., known popular URLs such as https://outlook.live.com/owa/
and https://abc7news.com/weather/), we mark the URL as benign.

• Experts repeatedly check the changes of contents located in the URLs for 3 days. We further
check the content changes for 30 days by collecting the content hashes from VT. If contents
changed over time, we filter the URLs.

D HEATMAPS FOR SCANNERS’ PAIRWISE JACCARD SIMILARITY OF BINARY AND
DETAILED LABELS AND SCANNER CLUSTERING
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(a) Phishing - Binary Label Similarity
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(b) Phishing - Detail Label Similarity

Fig. 14. Phishing - Jaccard similarity of scanners’s binary and detail labels for all periods
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(a) Malware - Binary Label Similarity
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(b) Malware - Detail Label Similarity

Fig. 15. Malware- Jaccard similarity of scanners’ binary and detail labels for all periods
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Fig. 16. Manual GT Malicious - Jaccard similarity of scanners’s binary and detail labels for all periods
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(b) VT fresh URLs - Detail Label Similarity

Fig. 17. VT fresh URLs - Jaccard similarity of scanners’s binary and detail labels for all periods
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Fig. 18. Scanner clustering using dynamic time warping distance
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