
Intrusion Detection with Unsupervised Heterogeneous
Ensembles using Cluster-based Normalization

Scott Ruoti, Scott Heidbrink, Mark O’Neill, Eric Gustafson, Yung Ryn Choe
Sandia National Laboratories

∗
scott@ruoti.org, {sheidbr,moneil,edgusta,yrchoe}@sandia.gov

ABSTRACT
Outlier detection has been shown to be a promising
machine learning technique for a diverse array of fields and
problem areas. However, traditional, supervised outlier
detection is not well suited for problems such as network
intrusion detection, where proper labelled data is scarce.
This has created a focus on extending these approaches to
be unsupervised, removing the need for explicit labels, but
at a cost of poorer performance compared to their
supervised counterparts. Recent work has explored ways of
making up for this, such as creating ensembles of diverse
models, or even diverse learning algorithms, to jointly
classify data. While using unsupervised, heterogeneous
ensembles of learning algorithms has been proposed as a
viable next step for research, the implications of how these
ensembles are built and used has not been explored.

1. INTRODUCTION
There are many open questions about the best ways to

aggregate the responses of ensemble learners [1; 4]. To
examine these and similar questions, we ran thousands of
experiments on the NSL-KDD dataset [2], comparing
different combinations of algorithms, settings for those
algorithms, normalization methods, and aggregation
approaches. The results from these experiments
demonstrate best practices for heterogeneous, ensembled
unsupervised outlier detection as well as giving insight to
several open questions in the area.

The contributions of our research are as follows:

• Novel cluster-based normalization method. We
have developed a novel approach for normalization of
cluster-based outlier detection algorithms.

• Evidence that higher numbers of clusters
produce more accurate outlier detection.
Across all of our tests, the most determinant factor in
performance was the number of clusters that were
built by each clustering algorithm. In all cases,

∗Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the
U.S. Department of Energys National Nuclear Security
Administration under contract DE-NA0003525.

algorithms performed better when they built a larger
number of clusters. This suggests that when learning
the behavior of a network, it is best for each
individual type of behavior to be classified into its
own cluster, and not aggregated with other clusters.

• Comparison of aggregation methods. We
compare various methods for aggregating the
responses of algorithms within an ensemble. Our
results show that the using the mean value is the top
performing aggregation method, followed by using
the maximum value and then by having a voting
scheme requiring agreement of any two algorithms.

• Analysis of algorithm performance for
intrusion detection. In our testing, we found that
the best performing systems were always ensembles
of algorithms, and not a single algorithm by itself.
We found that SimpleKMeans was in all of the top
performing ensembles. We also found that adding
multiple algorithms from the same family (e.g.,
SimpleKMeans and XMeans) can also be more
beneficial than adding a diversity of algorithms.

2. SYSTEM
Our system was built using standard and third-party

unsupervised algorithms implemented in Weka which were
empirically verified to be able to run at near line speed,
shown in Table 1.

We modified the algorithms to output a single score
which represents the “outlierness” of an instance. For
clustering algorithms we did this in the following way: (1)
We retrieved the cluster that the passed instance should be
classified into. (2) We then retrieved the metric that was
used by the cluster to determine the cluster assignment,
and returned that metric as the “outlier” score. In several
cases, we modified the value so that it scaled linearly.

We then normalized these scores with two different
approaches so that scores from different algorithms can be
directly compared. The first approach scales the data
based outputs across the entire training set. We analyze
the scores produced during training, and calculate the
minimum score (min score), the maximum score
(max score), and the range of scores
(range = max score−min score). These values are stored
for each algorithm. During analysis, scores are normalized
using the following formula:

normalized score = (score−min score)
range

. To address
limitations in this approach, we propose our novel

2017 IEEE 24th International Conference on Web Services

978-1-5386-0752-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICWS.2017.107

862

Algorithm Source Type

InterquartileRange Native Filter

SimpleKMeans Native Clusterer

XMeans Native Clusterer

IsolationForest Plugin Classifier

Expected Maximization (EM) Native Clusterer

MTree Plugin Clusterer

Learning Vector Quantization (LVQ) Plugin Clusterer

CascadeSimpleKMeans Native Clusterer

SelfOrganizingMap (SOM) Plugin Clusterer

SequentialInformationBottleneck (sIB) Native Clusterer

Table 1: Weka algorithms used in the system

normalization technique, where normalization models are
tracked per cluster. In other words, instead of having a
single min score, max score, and range for each
algorithm, we generated a min score, max score, and
range for each cluster created by the algorithm.
Normalization for an instance is then applied by which
cluster it was closest to.

Next, we aggregate the normalized scores to calculate a
single score for the ensemble. We allow for four common
approaches: minimum value, maximum value, mean value,
or a voting scheme.

Finally, this score is compared against a threshold to
determine whether the given instance is an outlier. The
score from the aggregation step is compared against a
predefined threshold to determine whether or not the
instance is an outlier.

3. EXPERIMENT METHODOLOGY
Using our system, we ran millions of experiments using

the NSL-KDD dataset [2], a labeled dataset that attempts
to mimic real network traffic. We then compared the
results from different configurations and identified trends
which provided insight into how to best perform intrusion
detection with unsupervised outlier detection ensembles.

3.1 Configurations and Experiments
For our experiments, we evaluated the effect of the

following factors:

1. Algorithm selection: We used ten total algorithms
in this work, and ran experiments on all possible
combinations of these.

2. Cluster count: We use two values for this factor:
low number of clusters and high number of clusters.
Our target sizes for each of these is five and twenty,
respectively. We say “target” here because some
algorithms lack an explicit parameter to specify the
number of clusters during model generation.

3. Normalization method: We tested both
traditional normalization and our novel cluster-based
normalization method.

4. Aggregation method: We tested four styles of
aggregation. This included three numeric integration
methods (min, max, mean) as well as voting-based
aggregation. For voting-based aggregation, we
ignored VOTE-1 and VOTE-N schemes.

We conducted experiments using all possible
combinations of these factors. We call the set of values for
each combination a configuration. In total, this gave us
40 + 3 ∗ 4, 052 + (

∑9
n=2

∑10
i=n

(
10
i

)
) ∗ 2 ∗ 2 = 28, 580

configurations.

For each of these configurations we evaluated its
performance against a range of threshold values, ranging
from [0, 2] in .01 increments. This allowed us to determine
optimal threshold levels and generate ROC curves for each
configuration. In total, 5, 744, 580 experiments were
conducted for generating the data for each configuration.

3.2 Metrics
For each experiment we calculated the true-positive rate,

false-positive rate, and true-negative rate. Using this
information, we generated a ROC curve for each
configuration. Additionally, for each configuration we also
calculate several single score metrics: the area under the
curve (AUC), partial AUC from [0, 1] with .1 increments,
the F1 score, the F0.5 score, and Youden’s J-statistic [3].
These metrics are helpful in obtaining a quick sense of the
performance of a given configuration.

Because of the large number of configurations, it was
impossible to manually perform exhaustive pairwise ROC
curve comparisons for all them. To filter our result set, we
remove from consideration all configurations whose ROC
curve is always strictly below another configuration’s ROC
curve. After removal of these dominated configurations, we
then ordered the remaining configurations by our various
single-score statistics. This allowed us to quickly establish
the top performing configurations, which were then
examined manually. In total there were 13, 553 dominated
configurations, and their removal reduced the analysis
space by 47.4%.

4. RESULTS
In this section we describe the results of our

experimentation. While we analyzed all of our results, in
this section we discuss a sample of the data that clearly
shows what was learned from our results, but we
emphasize that the trends discussed in this section held
over all our results.

4.1 Normalization
As shown in figure 1, cluster-based normalization

outperforms algorithm-based normalization. For the
top-performing 163 configurations, cluster-based
normalization has 100% representation and
algorithm-based normalization has almost none. Out of the
non-dominated set of configurations (N = 15, 027), 44%
used cluster-based normalization while 56% used
algorithm-based normalization. When directly comparing
algorithm-based normalization against cluster-based
normalization, i.e. where configurations match in
aggregation method and algorithms used, 70% of the
configurations using cluster-based normalization obtain
higher J-Statistics than their algorithm-based
normalization counterparts. This gives strong evidence
that our novel normalization method improves upon the
standard normalization approach, at least for outlier
detection tasks on datasets similar to NSL-KDD.

4.2 Cluster Size

863

Figure 1: Percent share of the two normalization methods
with respect to configuration rank (ordered by descending
J-Statistic). Only non-dominated configurations are
considered. Cluster-based normalization commands 100%
share for the top 163 configurations.

Figure 2: Percent share of the two cluster sizes with
respect to configuration rank (ordered by descending
J-Statistic). Only non-dominated configurations are
considered. Large clusters command 100% share for the top
1453 configurations.

Figure 2 shows the share of our two cluster values across
top-performing configurations by J-Statistic. Large clusters
command 100% share for the top 1453 configurations,
further demonstrating the utility of higher number of
clusters for this learning task. Small clusters are not
represented significantly until the top 2000 configurations
are considered. When directly comparing cluster sizes,
keeping other factors constant, 67% of large cluster
configurations outperform their small-cluster counterparts.

4.3 Aggregation
Figure 3 shows the share of aggregation methods with

respect to top-performing configurations. Mean, Max, and
Vote-2 are the most relevant for the highest performing
configurations, and Vote-2 replaces Mean as the most
represented method after considering configurations
beyond the top 200. It is interesting to note that Vote-2 is
represented over Max (i.e., Vote-1) after the top 16
configurations, but that Vote-3 or any other voting method
never overtakes Vote-2. This suggests that voting as a
concept is not well-suited for this task, but that the usage
of “second opinion” shows promise.

4.4 Algorithms

Figure 3: Percent share of the various aggregation
methods with respect to configuration rank (ordered by
descending J-Statistic). Only the top 10% of non-dominated
configurations are shown. The Mean aggregation method
dominates the top performing configurations but is replaced
by Vote-2 after the configurations beyond the top 200 are
considered.

Figure 4: Percent presence of the various algorithms in a
configuration with respect to configuration rank (ordered
by descending J-Statistic). Only the top 10% of non-
dominated configurations are shown. IQR, SimpleKMeans,
sIB have the greatest presence in the set of highest ranked
configurations.

None of the top performing configurations used only a
single algorithm. Our results are actually rather definitive
in asserting that ensembles far outperform single algorithm
solutions.

We also note that SimpleKMeans and sIB are in all of
the top-performing configurations. The next most common
algorithm is interquartile range (IQR). This same pattern
continues through the rest of the data, with the top
configurations always including SimpleKMeans, and most
including IQR. This can be seen at a large-scale with
Figure 4. We did find the presence of all algorithms in at
least some of the top 100 configurations. This suggests
that there is value to each approach.

Past research has suggested that it is preferable to
include two algorithms from different families than the
same family[4]. While our data shows that this is true for
the first two or three algorithms, it doesn’t hold for greater
numbers of algorithms. CascadeSimpleKMeans and
SimpleKMeans are often both used in the top performing

864

configurations, even though they are in the same algorithm
family. Even more interesting, when we ran a set of
experiments where we simultaneously included multiple
versions of the KMeans algorithms—differing only in the
number of clusters (5, 10, 15, 20)—we found that the top
configurations often contained multiple copies of
SimpleKmeans. While this result is not definitive, it
indicates that more research needs to be done on algorithm
selection, specifically with respect to algorithm diversity.

4.5 ROC Comparison of Top Configurations
The differences in the ROC curves between the top

performing configurations becomes almost
indistinguishable after about a false positive rate of 0.1.
However, when the considering normalization method, we
see that the naive normalization method has a long tail
before reaching a true positive rate of 1, but until the false
positive rate of roughly 0.2 they perform nearly as well as
the top 20 performing configurations.

For different clusterings we find that small-cluster
configurations perform worse at lower false positive rates,
but don’t have the long tail until they reach a value of 1 for
true positive rate. Summarily, large-cluster configurations
perform better at a lower value for acceptable false
positives and normalization-by-cluster configurations
perform better at larger acceptable false positive rates.

5. DISCUSSION
We seek to provide further incite to three important

aspects of outlier ensembles as discussed by Zimek et. al.:
“assessment of diversity, normalization of scores, and
combination procedures.” Most importantly we provide, to
the best of our knowledge, a new normalization method to
explore when creating ensembles of clustering algorithms.

While Zimek et. al. and Aggarwal both highlight
numerous issues to consider when assessing the diversity of
an ensemble we focused on two: different cluster sizes and
different algorithm families. While combining different
families was essential in our top performing ensembles,
including another algorithm from the same family
outperformed further increasing diversity. An initial
consideration is that perhaps there is a different
normalization method that would allow a better
“translation” between the two families scores so that each’s
score could be compared correctly. We attempted to
resolve this with a normalization method based on each
cluster’s actual behavior rather than on the algorithm as a
whole. While this did perform better than a naive
normalization, it did not resolve the issue. We also verified
that Aggarwal was correct in suggesting that the same
algorithm used with different parameters, is a good form of
ensembling. This is promising in that parameters perhaps
don’t need to be “tuned” to each application, but rather
an ensemble of various parameters can be used instead.

We also believe that combining aggregation methods
could produce more accurate results. Many algorithms,
such as XMeans, only performed best in certain
aggregation schemes. This suggests that these algorithms
may “pull down” the outlier score in non-optimal
aggregation methods. Perhaps then combining aggregation
methods based on the alogirhtms can produce a better
result, such as taking the max within algorithm families

and then average across different families.

5.1 Future Work
There are four specific future work directions we believe

should be taken. First, an analysis of normalization
methods in regards to “translating” between algorithm
families. Second, combining aggregation methods in
ensembles. For example averaging the results between the
same family of algorithms while taking the max value
between different algorithm families. Third, analyzing
different distance metrics could help resolve issues in
clustering algorithms where some have features with large
ranges, and others with much smaller ranges. Finally,
analyzing how these algorithms perform given a sequential
ordering, rather than an end aggregation method.

6. REFERENCES

[1] C. C. Aggarwal and P. S. Yu. Outlier detection for high
dimensional data. In ACM Sigmod Record, volume 30,
pages 37–46. ACM, 2001.

[2] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani.
A detailed analysis of the kdd cup 99 data set.
In Proceedings of the Second IEEE Symposium on
Computational Intelligence for Security and Defence
Applications 2009, 2009.

[3] W. J. Youden et al. Statistical methods for chemists.
Wiley publications in statistics, 1951.

[4] A. Zimek, R. J. Campello, and J. Sander. Ensembles for
unsupervised outlier detection: challenges and research
questions a position paper. ACM SIGKDD Explorations
Newsletter, 15(1):11–22, 2014.

865

