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Abstract—Developing secure software is inherently difficult,
and is further hampered by a rush to market, the lack of
cybersecurity-trained architects and developers, and the difficulty
of identifying flaws and deploying mitigations. To address these
problems, we advocate for an alternative paradigm—layering
security onto applications from global control points, such as
the browser, operating system, or network. This approach adds
security to existing applications, relieving developers of this
burden. The benefits of this paradigm are three-fold—(1) in-
creased correctness in the implementation of security features, (2)
coverage for all software, even non-maintained legacy software,
and (3) more rapid and consistent deployment of threat mitiga-
tions and new security features. To demonstrate these benefits,
we describe three concrete instantiations of this paradigm—
MessageGuard, a system that layers end-to-end encryption in
the browser; TrustBase, a system that layers authentication in the
operating system; and software-defined perimeter, which layers
access control at network middleboxes.

I. THE CASE FOR AN ALTERNATE PARADIGM

Many of today’s software products are insecure. Often,
security is ignored as companies race to be first-to-market.
Subsequent attempts to bolt security onto existing products
face many challenges, frequently leaving residual vulnerabilities.
The current paradigm for developing secure software is failing,
and it is essential to explore alternatives.

To make progress, it is important to first understand
the drawbacks of the current secure software development
paradigm—i.e., implementing security on an application-by-
application basis. In this model, each application needs to be
architected with security in mind, and many—if not most—
application developers must then correctly implement the
relevant security features. Unfortunately, there is a significant
lack of developers trained in cybersecurity [1], meaning that the
architecture and implementation are both likely to have security
flaws. Moreover, there is no indication that the number of
cybersecurity-trained developers will ever scale up sufficiently
to support the ever-increasing need for new applications.

To partially address this problem, security-focused soft-
ware libraries (e.g., OpenSSL, BouncyCastle, PyCrypto) have
been developed to provide trustworthy instantiations of basic
cryptographic primitives and protocols. While these libraries
can help developers implement specific security functionality,
they require extensive knowledge to use correctly [2], with
experience showing that thousands of applications are broken
even when performing what should be a relatively simple task
of verifying website authenticity [3], [4], [5], [6]. Additionally,
when vulnerabilities are eventually found in these security

libraries (e.g., Heartbleed in OpenSSL), it is hard to ensure the
deployment of mitigations to all affected software. Not only
do developers need to become aware of the flaw, integrate the
mitigation, and deploy the updated software, but in many cases,
users must also be aware of the problem and proactively update
all of their compromised software.

Finally, even if applications are properly architected and
implemented, it is likely that they will one day become legacy
applications and cease to be supported. After support ends, even
properly implemented applications can see flaws emerge as the
underlying operating system and runtimes change. Moreover,
the lack of ongoing support means these flaws are unlikely
to be addressed. The fact that legacy software is frequently
used not only directly by users, but also as subsystems to other
applications only further compounds the challenge.

II. THE LAYERED SECURITY PARADIGM

Regardless of the specific reason, the result of the current
paradigm is thousands, if not tens-of-thousands, of applications
with broken and outdated security. To address these issues, we
advocate for an alternative paradigm—instead of implementing
security into individual applications, it should instead be
implemented at global control points, which are then responsible
for layering security on top of the applications. For simplicity,
in this paper we refer to this paradigm as the layered security
paradigm.

The workflow for this paradigm is as follows (see Figure 1):

1) The application initiates an insecure action that needs
additional security. For example, requesting a website
over HTTP, authenticating using a password (non-
two-factor authentication), or requesting a plaintext
file).

2) The global control point intercepts the insecure action
and layers the appropriate security by requesting a
secure action. For example, accessing the website
using HTTPS, authenticating using two-factor authen-
tication, or requesting an encrypted file. The modified
action then takes place.

3) The global control point intercepts the result and
modifies it to make it suitable for the application.
For example, returning the result of the password
authentication or decrypting a file before returning it.

4) The application receives a response with the correct
information.

The layered security paradigm removes the need for
developers of individual applications to be cybersecurity experts,
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Fig. 1. Alternate Paradigm Flow Diagram.

instead moving this burden to the developers of the global
control points (e.g., browsers, operating systems, firewalls). As
the number of global control point implementations is many
orders of magnitude smaller than the number of applications,
this paradigm sidesteps the largest limitation of the existing
secure software development paradigm. Application developers
will continue to develop applications as they do today, largely
agnostic of security, and as needed the global control point
will automatically and transparently layer the appropriate
security functionality. Critically, the new security functionality
is added without the knowledge or control of the underlying
application. This means that all applications—including existing
applications—are supported by the layered security paradigm,
regardless of whether they were designed with it in mind.

We note that this is not the first paper that describes the
layered security approach. In our own work [7], [8], [9] and
that of others [11], [12], [13], [14], [10], this paradigm has
been used to secure specific classes of applications (e.g., email)
and operations (e.g., HTTPS). Still, to our knowledge, this
is the first paper that abstracts the layered security paradigm
from a specific application area and discusses how it could be
applied more generally as an alternative to the failing existing
secure software development paradigm.

A. Benefits

The benefits of the layered security paradigm are three-
fold—correctness, coverage, and speed of deploying updates.

First, this paradigm increases the correctness of deployed
security functionality. Instead of needing to correctly implement
security in thousands of applications, it is only necessary
to correctly implement security at the global control points.
The smaller number of global control points means that
they can receive increased scrutiny by the limited number
of cybersecurity-trained architects and developers. Many global
control points like browsers and operating system are already
maintained by large organizations, and these companies—for
example, Google and Microsoft—are well-equipped to handle
this type of work.

Second, it increases the coverage of security features in
applications. The global control point will layer security on
to all applications, providing protection even to applications
that were not designed with security in mind, have incorrect
implementations, and are not being actively maintained.

Third, it increases the speed at which updates can be
deployed. Instead of needing to update each application in-
dividually, new features and threat mitigations can be deployed

in a single update that impacts all applications. Having fewer but
well-maintained systems providing security results in updates
that address vulnerabilities everywhere they are relevant.

B. Limitations

Layering security at a global control point has several
limitations. First, it introduces a single point of failure that
affects all applications. Although this presents a significant risk,
we believe it is preferable to the current state of application
security. It is better to have a well-maintained, difficult-to-
compromise single point of failure than thousands of poorly
maintained applications with known vulnerabilities. Second,
layering security onto an unaware application has the potential
to disrupt that application’s functionality and usability. Extreme
care must be taken when developing the layered security system
to avoid this problem.

C. Potential Global Control Points

The feasibility of this paradigm rests on finding global
control points where security can be added without cooperation
from applications. We identify three potential global control
points, though there are certainly others possible:

• The browser is a natural global control point for
web applications. The web has become the de facto
method for deploying new applications, acting as
the central point in the Internet’s architecture [15].
Some work has sought to exploit this prominence to
design new browser architectures with strong security
properties [16], [17], [39]. Within the browser, there are
many places to layer security including when creating
and rendering the DOM, as well as when processing
network traffic.

• The operating system acts as a good global control
point for applications running on a single device.
Firewalls and anti-virus programs have long operated
at this global control point to impose security policies
on applications. The operating system has such broad
coverage that there is little limit to the locations security
can be layered here— e.g., at the file system, at the
network layer, before content is rendered.

• Network middleboxes is a common global control point
for an organization. These middleboxes are already
used to layer traffic filtering and threat detection on
top of existing network applications. There are many
interesting potential uses for these middleboxes, includ-
ing enforcing proper TLS authentication or requiring
two-factor authentication for legacy applications.

While the layered security paradigm clearly is a natural fit
for network security, the approach generalizes more broadly.
For example, an operating system control point could monitor
allocated memory and prevent buffer overflows. Likewise, an
operating system global control point could augment local
applications with safe password entry and strong password
protocols [18].
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D. Layering-Aware Applications

While this paradigm works with unmodified applications, it
can be even more powerful for layering-aware applications.
These applications can share context-specific information
regarding the operation to the global control point. While the
global control point ultimately decides what action to take,
this context can allow the global control point to make more
informed decisions about what action to take. Additionally,
layering-aware applications can avoid implementing security
features they know will be provided by the global control point.

A good example of this approach is adding end-to-end
encryption into web applications. A variety of web applications
could use this functionality, such as direct messaging in
Facebook and Twitter, or shared document editing such as
Google Docs, so that sensitive information is hidden from
service providers. If these applications could provide plaintext
and a user identifier, the global control point could then encrypt
the plaintext for the application, ensuring confidentiality and
integrity.

III. EXAMPLE USE CASES

To demonstrate the feasibility of the layered security
paradigm, we consider the three global control points mentioned
above—the browser, the operating system, and network mid-
dleboxes. We first describe MessageGuard, a system from our
own research that uses a browser global control point to layer
end-to-end encryption into web applications. We then describe
TrustBase, a system we developed that uses an operating system
global control point to provide system administrator control
over certificate-based authentication of remote servers. Finally,
we describe the use of a software-defined perimeter, a technique
from industry that layers additional access control onto network
services from network middleboxes.

A. MessageGuard

Users share private information on the web through a variety
of applications, such as email, instant messaging, social media,
and document sharing. HTTPS protects this information during
transmission but does not protect users’ data while at rest.
Additionally, middleboxes can weaken HTTPS connections
by failing to properly implement TLS or adequately validate
certificate chains [19]. Even if a website correctly employs
HTTPS and encrypts user data while at rest, the user’s data is
still vulnerable to honest-but-curious data mining [7], third-party
library misbehavior [20], website hacking, protocol attacks [21],
[22], [23], and government subpoena.

This state of affairs motivates the need for end-to-end
encryption of user data– a user’s sensitive data is encrypted at
their computer and only decrypted once it reaches the intended
recipient, remaining opaque to the applications (e.g., websites)
that store or transmit this encrypted data. Instead of trying to
retrofit the multitude of applications that could benefit from end-
to-end encryption, we have built MessageGuard [7], [8], [9],
a system that layers end-to-end encryption on top of existing
web applications. MessageGuard uses the browser as its global
control point and is deployed as either a browser extension or
a bookmarklet.

Portions of the web application are replaced with security overlays.

Fig. 2. Security overlays.

User’s sensitive data is only accessible within the MessageGuard origin.

Fig. 3. Overview of the MessageGuard architecture.

1) Design: MessageGuard uses security overlays [7] im-
plemented as iFrames [8] to layer end-to-end encryption into
existing web applications (see Figure 2). Inside a security
overlay, users interact with the plaintext contents of their
sensitive data, while the underlying applications only have
access to the end-to-end encrypted ciphertext. MessageGuard’s
overlays are designed to be functionally transparent to users,
allowing users to complete tasks as they are accustomed to,
while still protecting the data from the web application.

MessageGuard’s architecture is given in Figure 3. The front
end component is the bridge between MessageGuard and the
underlying application. It is responsible for scraping encrypted
text from the web application and sending it to the overlay.
Similarly, when text is authored in the overlay, the ciphertext
is passed to the front end and inserted into the web application.
Importantly, the front end component has no direct access to
the overlay’s content and is never given access to an overlay’s
sensitive data. MessageGuard includes a general front end that
works with most applications but also supports application-
specific front ends for greater integration and usability.

Within an overlay, a substitute interface is displayed to
allow users to view and author sensitive data. These overlays
user a packager to wrap encrypted data in a form suitable for
transmission to the front end and eventual insertion into the
underlying web application. The packager is also responsible
for reversing this process when an encrypted package is
received from the front end. Finally, the key management
component is responsible for storing and using the user’s
keys. MessageGuard includes general implementations for a
read overlay, a write overlay, a packager; we also include key
management components for PGP, IBE, and a password-based
key derivation.
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MessageGuard is able to add end-to-end encryption to any
application that displays data to users or allows the user to enter
data. Critically, this is done without requiring the underlying
application to be modified. This is important to allow for
the rapid deployment of end-to-end encryption, regardless of
the number of disparate systems that would otherwise need
to be updated (e.g., email). Still, MessageGuard can benefit
from MessageGuard-aware clients. These clients can provide
contextual clues to the MessageGuard front end—for example,
the type of interface to display (e.g., a short-form or long-
form composition interface) or content size limits—enabling
tighter and more consistent integration with MessageGuard.
Alternatively, applications could provide application-specific
overlays, exactly replicating the expected functionality of the
application in the overlay. This is far easier than adding
end-to-end encryption directly to the application because it
abstracts encryption standards and key management away from
application developers.

2) Ubiquity and Performance: We tested MessageGuard
on major browsers and it worked in all cases: Desktop—
Chrome, Firefox, Internet Explorer, Opera, and Safari. Android—
Chrome, Firefox, Opera. iOS—Chrome, Mercury, Safari. We
also tested MessageGuard on the Alexa top 50 web sites. One
of the sites is not a web application (t.co), and another requires
a Chinese phone number to use it (weibo.com). MessageGuard
was able to encrypt data in 47 of the 48 remaining web
applications. The one site that failed (youtube.com) did so
because the application removed the comments field when it lost
focus, which happens when focus switched to MessageGuard’s
compose overlay. We were able to address this problem with a
customized front end that required only five lines of code to
implement.

We profiled MessageGuard on several popular web appli-
cations and analyzed MessageGuard’s impact on load times.
In each case, we started the profiler, reloaded the page, and
stopped profiling once the page was loaded. Our results show
that MessageGuard has little impact on page load times and
does not degrade the user’s experience as they surf the Web:
Facebook – 0.93%, Gmail – 2.92%, Disqus – 0.54%, Twitter –
1.98%.

Since MessageGuard is intended to work with all websites,
we created a synthetic web app that allowed us to test
MessageGuard’s performance under extreme load. This app
measures MessageGuard’s performance when overlaying static
content present at page load (Stage 1) and when overlaying
dynamic content that is added to the page after load (Stage 2).
Using this synthetic web application, we tested MessageGuard
with six browsers, finding that overhead grows linearly for
Stage 1 content, and super-linearly for Stage 2 content. Further
analysis showed that the super-linear growth of Stage 2 content
was due to inefficient browser implementations and that it could
grow linearly as browsers improve their implementations—as is
already the case in Firefox. Regardless, even in extreme cases
(Stage 2, 1,000 overlays) overlaying occurs quickly (max 61
ms).

3) Usability: To validate the usability of overlaying end-to-
end encryption on top of existing applications, we conducted a
series of IRB-approved usability studies.

First, we evaluated Private Facebook Chat [24], a system

overlaying end-to-end encryption on top of Facebook Chat.
Almost all users were able to use MessageGuard to encrypt
their chat sessions, except two extremely novice users that were
unable to complete any tasks. Additionally, users indicated that
they were generally satisfied with PFC and that they would be
interested in using it in practice.

Second, we evaluated Private WebMail (Pwm), a system
for overlaying end-to-end encryption on top of GMail’s web
application. Later, we expanded Pwm to support non-email
applications, and at this point we renamed it MessageGuard [8].
We evaluated Pwm across five different IRB-approved usability
studies, including a total of 186 participants. Each of these
studies utilized a standard usability metric, the System Usability
Scale (SUS) [25], [26], to compare Pwm against prior versions
and alternative approaches.

The first study (25 participants) had participants install Pwm
using a bookmarklet, and the second (32 participants) and third
study (28 participants) had participants install Pwm using an
extension [7]. This early version of Pwm averaged a SUS score
of 73.8, putting it in the 70th percentile of systems tested with
SUS — first study (75.7), second study (70.7), and third study
(70.7). All future studies used the extension installation method.

Based on feedback from the first three studies, we further
refined Pwm’s design and tested it in a fourth study (51
participants) [9]. The results of this test was a SUS score of
80.0, falling in the 88th percentile of systems tested with SUS,
and nearly all participants (92%) believed that their friends
and family could easily start using Pwm. In a fifth study (fifty
participants) examining whether Pwm could be adopted in a
grassroots fashion [27], [28], Pwm received a SUS score of
72.3, falling in the 63rd percentile of systems tested with SUS.1

In the first, second, third, and fifth studies we also compared
Pwm against alternative secure email systems—Encipher.it,
Mailvelope, MessageProtector, Tutanota, Virtru, and Voltage
Mail. In each case, Pwm was always rated as the most usable
system. This demonstrates that overlaying user-visible security
can be just as usable as integrating that security directly into
the application.

B. TrustBase

TrustBase was designed to address significant flaws in
certificate-based authentication of remote servers [10]. Authenti-
cation of the server is critical part of TLS, yet many applications
do not properly validate the server’s certificate [3], [4], [5],
[6]. In addition, the Certificate Authority (CA) system itself is
vulnerable because most CAs can create certificates for any host.
When DigiNotar was hacked in 2011, the perpetrators were able
to create hundreds of falsified certificates that were accepted by
all browsers [29]. CAs have been shown to be vulnerable to a
variety of weaknesses [30], [31], and governmental ownership
or access creates the possibility of malfeasance [32], [33]..

To address these problems, TrustBase uses an operating
system control point to give system administrators and OS

1In this study we also examined other systems, all of which received
uncharacteristically low scores, suggesting that Pwm’s true SUS score is
much closer to the 80 found in our fourth study. We are currently replicating
this study to correct for experimental bias. Initial results have put Pwm’s SUS
score back around 80.
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Fig. 4. TrustBase architecture.

vendors control over authentication policy. The architecture
for TrustBase is shown in Figure 4. The traffic interceptor
and a set of handlers operate in the kernel to intercept
all outgoing traffic and identify certificates that should be
validated, such as in a TLS handshake. The certificates are
given to a userspace policy engine, which coordinates with a
variety of authentication systems to validate the certificates,
enforcing whatever aggregation policy the system administrator
chooses. An evaluation of TrustBase shows that it has negligible
overhead.

The use of an operating system global control point affords
TrustBase some interesting advantages. Because TrustBase
intercepts traffic at the socket layer, before traffic is delivered
to the transport protocol, it is able to secure all applications,
without modification. This is particularly important given
the large number of applications that have been found to
improperly implement certificate authentication. Moreover, the
modular architecture enables TrustBase to be used to control
authentication for a variety of protocols; currently TrustBase
supports TLS and STARTTLS, but it can easily be extended
to QUIC and DTLS, for example.

TrustBase also demonstrates the utility of layering-aware
applications. The architecture includes an API so that modified
applications can directly ask the policy engine for authentication
by providing a hostname, certificate, and relevant metadata.
Calling this API enables the application to avoid implementing
authentication, which would eliminate needless duplication of
functionality that the operating system is providing.

The generality of TrustBase is demonstrated by virtue of
implementations on Linux, Windows, and Android, as well as a
wide range of authentication systems that have been developed.
A certificate revocation plugin extends OCSP checking to
all applications. A CRLSet blocking plugin checks Google’s
CRLSet to determine whether a certificate should be blocked,
extending Chrome’s protection to all applications. A DANE
plugin [34] uses DNS to distribute public keys that should
be used to sign certificates for a domain. A notary plugin
provides multi-path probing to check certificates, similar to
ideas promoted by Perspectives [35] and Convergence [30].
The plugin architecture also enables some novel enhancements
beyond certificate authentication—one security service enforces
a secure default configuration for TLS and disables insecure
cipher suites.

Fig. 5. Architecture for software defined perimeter (SDP).

C. Software-Defined Perimeter (SDP)

Many organizations protect their network services by
placing them inside the organization’s local area network (LAN).
Only computers connected to the LAN have access to these
services. If a user outside the LAN needs access to these
services, they can initialize a virtual private network (VPN)
connection to the LAN and access the services. The problem
with this approach is that once an adversary gains access to
the LAN (either physical or remote), the attacker can move
laterally, compromising other machines and services on the
network with relative ease.

One approach to addressing this problem is a software
defined perimeter (SDP) [36], [37]. With SDP, all of an
organization’s network services are initially dark, refusing to
respond to any network packets—to an attacker they might well
not even exist. For a client to talk to a network service, they
must first register their intent with the SDP Controller. Once
approved, the SDP Controller gives the client an access token
that they can present to a dark network service—or potentially
a gateway that will tunnel connections to those services—to
begin communicating with that network service. Unlike a VPN,
SDP does not grant blanket access to the network, but rather
customizes user tokens to only allow access to the services
that the user should have access to. This effectively layers fine-
grained access control on top of the organization’s network.

Once SDP has been deployed, the SDP controller becomes
a global control point at which additional access control can be
layered onto network services. For example, the SDP controller
can require that users authenticate to the SDP controller using
multi-factor authentication, effectively layering multi-factor
authentication on top of all the organization’s network services.
Alternatively, the SDP controller can layer role-based access
control (RBAC) or attributed-based access control (ABAC) on
top of network services by only providing tokens for services for
which the user has the correct roles or attributes. Other examples
of security that can be layered onto network services include
asset management (only authorized devices can access the
services), patch management (only patched devices can access
the service), and access revocation (immediate termination of
access for a compromised client).
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Critically, this layering happens without modifying the
underlying network services. While many new applications
have begun deploying some of the above features (e.g.,
multi-factor authentication), many more do not. While these
features may slowly percolate to some applications, there
is a significant body of legacy software that is no longer
maintained. This is important, as some legacy systems are
currently completely unsecured (open to all on the LAN) or
protected only by a trivially-compromised mechanism (single
hard-coded password).

In the current secure software development paradigm, all
legacy applications would need to be updated to support the
needed security properties. This simply does not scale, as
most organizations lack the developer resources to maintain
the security of all legacy software that they have purchased or
installed. In contrast, layering security using SDP does scale,
allowing a single developer team to add additional access
control in front of all legacy network services.

IV. RELATED WORK

A large number of academic systems have used global
control points to impose security on unmodified applications.
We sample a few of these here, illustrating the use of a wide
variety of global control points.

Within the operating system, Wolthusen proposed layering
end-to-end encryption onto email. [11]. In their system, network
traffic is intercepted, email is identified, then it is encrypted
and signed. Their approach requires no changes to any email
clients on the system.

Within the browser, He et al. proposed ShadowCrypt, a
Google Chrome extension for layering end-to-end encryption on
top of web applications. [12]. ShadowCrypt mimics Message-
Guard’s functionality, but instead of leveraging security overlays
it uses the Shadow DOM, an upcoming HTML5 standard.

Lau et al. use a somewhat unique global control point—
the accessibility framework in modern operating systems—to
design Mimesis Aegis (M-Aegis), a system that layers end-to-
end encryption on top of mobile applications [13]. M-Aegis
functions similarly to MessageGuard but is the first system
that attempts to provide ubiquitous and integrated encryption
outside of the browser. While this approach would be difficult
deploy across all operating systems [8], it has the potential to
be far wider reaching than MessageGuard.

Bate’s et al. proposed CertShim, a system that uses the
operating system’s dynamic library loader to layer correct
TLS functionality onto applications [14]. This is accomplished
by using the LD_PRELOAD environment variable to override
functions in dynamically-loaded security libraries, such as
OpenSSL. The new library ensures that TLS connections
are properly authenticated, regardless of mistakes in the
application’s code, while also allowing alternative methods
to be used that don’t necessarily rely on Certificate Authorities.
CertShim was later improved upon by TrustBase, which moves
the global control point to the operating system, providing
coverage to all applications, not just those that use certain
SSL libraries. This demonstrates the importance of choosing
appropriate global control points to maximize coverage.

Finally, the danger presented by bad implementations of the
layered security paradigm has been illustrated by Durumeric
et al. [38]. They studied a number of popular middleboxes
and client-side security software that intercept TLS traffic to
provide web filtering and content analysis (e.g., virus scanning).
They found that nearly all of these solutions reduced the
security of the TLS connection or introduced vulnerabilities.
However, we note that the Blue Coat Proxy was correctly
implemented, and was able to increase security as compared to
unmodified connections. This demonstrates that it is possible for
security experts with experience and resources are able to build
security services that are robust to errors. Moreover, fixing this
handful of systems with bad implementations—which could
then increase the strength of TLS and Web security across
all connections—is still far more managemable than fixing all
applications which improperly implement TLS.

V. SUMMARY AND FUTURE WORK

Requiring all applications to independently and correctly
implement security is not working. Instead, we advocate for the
layered security paradigm where security is layered on top of
existing software at global control points. This paradigm greatly
increases the correctness of security protecting applications and
simultaneously ensures that this correct functionality applies to
all applications, including those that were not designed with
security in mind. Additionally, this paradigm ensures that new
security features and threat mitigations can be more rapidly
deployed across all applications.

In this paper, we described MessageGuard and software-
defined perimeter, two examples of layering on security at a
global location. MessageGuard added end-to-end encryption
to existing web applications, and a software-defined perimeter
adds additional access control to legacy network services. In
both cases, layering security at a global location was able to
support the vast majority of existing applications. Moreover,
the usability studies of MessageGuard demonstrate that even
user-facing security features can effectively be layered from a
global location.

While the layered security paradigm has risks and may not
work in all situations, in many cases, it can still substantially
increase security. Importantly, it scales in a way that the current
secure software development paradigm does not. As such, we
believe that the community would be well served to explore
additional applications for the layered security paradigm. Below
are several ideas for future work.

Exploring additional global control points. We have
discussed a variety of potential global control points, and there
are certainly others possible, such as a compiler, virtual machine,
and so forth. A good first step would be understanding what
kinds of security enhancements are possible at each global
control point, as well as the tradeoffs of pursuing a certain
enhancement at different global control points.

Layering-aware applications. The design of layering-
aware applications should be further explored, as these ap-
plications have the potential to be significantly more secure
and usable that non-layering-aware applications.

Password monitoring. Password systems can be strength-
ened by monitoring systems that alert users to any misuse of
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their password, similar to what Chrome’s browser extension
does. Alternatively, by mixing this approach with layering-
aware applications, it would be possible to centralize password
entry in the operating system [18]. This approach has many
potential benefits and is an interesting area of future research.

Network connection security. Recent systems like
CertShim [14] and TrustBase [10] are designed to provide
a layer of protection against applications that fail to establish
secure connections using proper certificate validation. They
also provide hooks to introduce alternative certificate validation
schemes without modifying user applications. There may
be other ways to strengthen authentication leveraging this
approach.

Content-based encryption and signing of web content.
Afanasyev et al. [39] recently proposed a new security paradigm
for the Web that replaces the connection-oriented security
mechanisms in common use today (e.g., TLS) with a content-
based security model where all data is signed and encrypted at
rest. This approach could be realized with new functionality
provided at global control points.

ACKNOWLEDGMENTS

We thank Jeff Andersen, Ben Burgon, Luke Dickinson,
Kimball Germane, Scott Heidbrink, Travis Hendershot, Nathan
Kim, Tyler Monson, Mark O’Neill, Chris Robertson, Ryan
Segeberg, Timothy van der Horst, Elham Vaziripour, Justin
Wu, and Song Yuanzheng for their work on MessageGuard.
We thank Mark O’Neill, Scott Heidbrink, Jordan Whitehead,
Dan Bunker, Luke Dickinson, Travis Hendershot, and Joshua
Reynolds for their work on TrustBase.

The MessageGuard research is supported by the National
Science Foundation under Grant No. CNS-1528022. The
TrustBase research is supported by the National Science
Foundation under Grant No. CNS-1528022 and research
sponsored by the Department of Homeland Security (DHS)
Science and Technology Directorate, Cyber Security Division
(DHS S&T/CSD) via contract number HHSP233201600046C.

REFERENCES

[1] J. R. Stark, “There simply are not enough cyber-security
specialists,” September 2016, [Online; Posted 2016/09/27]. [Online].
Available: https://www.complianceweek.com/blogs/john-reed-stark/
there-simply-are-not-enough-cyber-security-specialists

[2] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky, “Comparing the usability of cryptographic apis,” 2017.

[3] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating SSL
certificates in non-browser software,” in ACM Conference on Computer
and Communications Security, 2012.

[4] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
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