
PACE: Proactively-Secure Accumulo
with Cryptographic Enforcement

Scott Ruoti, Ariel Hamlin, Emily Shen, Cassandra Sparks, Robert Cunningham
MIT Lincoln Laboratory

Lexington, Massachusetts
scott.ruoti@ll.mit.edu, ariel.hamlin@ll.mit.edu, emily.shen@ll.mit.edu, cass.a.sparks@gmail.com, rkc@ll.mit.edu,

Abstract—Cloud-hosted databases have many compelling ben-
efits, including high availability, flexible resource allocation, and
resiliency to attack, but it requires that cloud tenants cede
control of their data to the cloud provider. In this paper,
we describe Proactively-secure Accumulo with Cryptographic
Enforcement (PACE), a client-side library that cryptographically
protects a tenant’s data, returning control of that data to the
tenant. PACE is a drop-in replacement for Accumulo’s APIs and
works with Accumulo’s row-level security model. We evaluate
the performance of PACE, discussing the impact of encryption
and signatures on operation throughput.

I. INTRODUCTION

Over the last several years, many companies have moved
their infrastructure to the cloud. This move is motivated by
the cloud’s increased availability, flexibility, and resilience [1].
Most importantly, the cloud enables a level of availability and
performance that would be impossible for many companies to
achieve using their own infrastructure. For example, using a
cloud infrastructure Kepner et al. achieved over 100,000,000
database inserts per second [2].

While the benefits of the cloud are compelling, they are
offset by the lack of control. No longer is a company the sole
administrator of its data and services, but rather it relies on IT
support from the cloud provider. While cloud providers have
strict policies preventing cloud administrators from accessing
or modifying tenants’ data, tenants are unable to ensure
that these policies are followed. While relying on the cloud
provider’s promised security is sufficient for some use cases,
it is insufficient for sensitive data—for example, personally-
identifying information or intellectual property.

In this work, we describe how cryptography can be used
to enable organizations to store their data on the cloud while
retaining control of that data. To demonstrate the feasibility
of this approach, we build a client-side library that encrypts
and signs data prior to uploading the data to Accumulo
cloud servers: Proactively-secure Accumulo with Cryptographic
Enforcement (PACE). This library allows cloud tenants to

DISTRIBUTION STATEMENT A. Approved for public release: distribution
unlimited.

This material is based upon work supported by the Department of Defense
under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the Department of Defense.

Fig. 1: Accumulo cell schema

control the visibility of their data using encryption and ensure
that other parties cannot insert or modify data using digital
signatures.

The contributions of our work include:
• Cryptographic enforcement of access control. The

PACE library allows organizations to encrypt all data
stored in an Accumulo table using a single key. Al-
ternatively, the PACE library supports cryptographically
enforced attribute-based access control (CEABAC), en-
crypting each row of a table based on the access control
policy specified in the row’s visibility field.

• textbfRow-level integrity PACE supports the ability to
sign data inserted into a table and notifies users when
data has been inserted or modified that is not properly
signed. Importantly, the PACE library is not a research
prototype, but a fully fleshed-out implementation ready
for use as a drop-in replacement to existing Accumulo
APIs.

• Performance profiling. We evaluate the PACE library’s
impact on operational throughput (i.e., inserts/reads per
second). This evaluation demonstrates that while encryp-
tion and signatures have an impact on throughput, the
impact is small enough to be acceptable in many use
cases.

II. BACKGROUND AND RELATED WORK

In this section, we describe the Accumulo database software.
We also discuss our threat model. Finally, we detail related
work.

A. Accumulo

Accumulo is a NoSQL database based on Google’s BigTable
design [3]. It is primarily concerned with allowing for a high
rate of ingest (i.e., inserts).

Tables in Accumulo are an ordered collection of cells (see
Figure 1). The cell is divided into two sections, the key and
the value. The key is composed of a row, a column family,

Fig. 2: Threat Model

a column qualifier, and a visibility field. The row, column
family, and column qualifier are used to to order and group
cells in Accumulo. The way in which these three fields are
used determine the “schema” of the table, though this schema
is not a strict SQL-like schema.

The visibility field is used to provide fine-grained access
control to individual cells. It stores a binary expression
over attributes—for example, doctor OR (nurse AND
admin). When Accumulo is queried, it only returns cells for
which the querying user has been assigned sufficient attributes
to satisfy the visibility field’s binary expression.

The timestamp orders cells that have identical row, column
family, and column qualifier values. By default, when cells
share row, column family, and column qualifier values, only
the cell with the most recent timestamp is returned by the
Accumulo server. Finally, the value is used to store arbitrary
binary data.

B. Threat Model

The cloud database threat model has five entities—inserting
clients, querying clients, the network, the database software
(e.g., Accumulo), and the disk storage platform (e.g., Hadoop).
The security of the cloud database can be compromised at
any of these entities. While the cloud tenant can control the
security of their own clients and ensure that TLS is used, the
tenant has little to no control of the administration of either
the database software or the disk storage platform.

In this paper we focus on addressing the threat of a
malicious database software administrator. While the techniques
discussed in this paper also provide some protection against a
compromised network or malicious disk storage administrator,

this is tangential to our goals. Finally, we consider malicious
clients — either inserting or querying —to be out of scope.

C. Related Work

Encrypted databases have received significant attention in the
research community in recent years. Advanced cryptographic
techniques such as fully homomorphic encryption (FHE)
[4] can provide a solution, but they are still prohibitively
impractical for real use cases. CryptDB [5], a system for
encrypting SQL databases in a way that still allows for queries
to be executed, is perhaps the most well known technology
that leverages simpler cryptographic techniques to provide
protection. Arx [6] improves on this design by using stronger
encryption (achieving IND-CPA, or indistinguishability under
chosen plaintext attack) and offering more functionality. A
systematization of research into cryptographically protected
database search was conducted by Fuller et. al [7].

These efforts towards enabling querying over cryptographi-
cally protected data are related to but separate from the problem
of enforcing record-level access controls over databases. The
former aims solely to protect against malicious database
administrators while the latter also aims to prevent individual
records in the database from being accessed by unauthorized
queriers. Attribute-based encryption (ABE) has been extended
to enforce access control policies [8]; the use of simpler
cryptographic techniques to achieve similar goals has been
studied by Solomon et. al [9].

III. ARCHITECTURE

Proactively-secure Accumulo with Cryptographic Enforce-
ment (PACE) is a Java library that cryptographically protects
data on the client. This prevents Accumulo cloud administrators
from viewing, inserting, or modifying sensitive data. PACE is
a drop-in replacement for the existing Accumulo API, only
requiring developers to replace a single line of code—the
instantiation of Writer and Scanner classes—and provide
appropriate configuration files and the user’s set of encryption
and signature keys. The problems of key management and
distribution are not handled by the library. PACE can be
downloaded at https://github.com/mit-ll/PACE.

A. Encryption

To protect an administrator from viewing sensitive data, the
PACE library encrypts all data. The row, column family, column
qualifier, and value field are encrypted while the visibility and
timestamp fields are not encrypted as they are required to
ensure that Accumulo functions as intended. Each of the four
fields are processed independently, allowing only a subset to
be encrypted or specifying different encryption options for
each field. PACE supports three types of encryption—field-
level encryption, searchable encryption, and visibility-based
encryption.

1) Field-level Encryption: Field-level encryption is the most
basic type of encryption, and searchable and visibility-based
encryption both build off of it. In field-level encryption, one
or more source fields (row, column family, column qualifier,

https://github.com/mit-ll/PACE

and value) are concatenated together, encrypted, then stored
in the destination field. The content of the source fields is
then removed. During decryption, this process is reversed, and
the source fields will be replaced with the values from the
decrypted destination field.

PACE encrypts data using AES and supports the following
modes: CTR, CFB, CBC, OFB, and GCM. For each of these
modes, all appropriate key sizes are supported—128, 192,
256. The key used to encrypt data is selected using a KeyId,
allowing different fields to be encrypted with different keys.

Because each of the supported modes uses a random
initialization vector (IV) or nonce, the same data will encrypt to
different ciphertext. This prevents inference-based attacks [10],
but also prevents encrypted fields from being searchable.

2) Searchable Encryption: PACE also support searching for
encrypted data. This is done using AES in SIV mode [11] to
provide deterministic encryption—i.e., the same plaintext will
always encrypt to the same ciphertext.

When a specific value is searched for in an encrypted field
(e.g., find encrypted row ”Alphabet”), then the search term
is encrypted deterministically, and that term is searched on
the server. Because AES does not preserve the lexicographical
ordering of plaintext in the ciphertext, searches over a range
of encrypted values (e.g., get all rows between ”A” and ”E”)
cannot be encrypted and sent to the server for filtering. Instead,
all possibly matching entries are downloaded by the client and
filtered after decryption. This process is handled automatically
by the API, and the developer does not need to worry where
filtering will happen.

Order-preserving encryption would have allowed full server-
side searching of encrypted data [12], but order-preserving
encryption has other drawbacks (e.g., poor performance and
information leakage [13]). Similar to, though less severe than
order-preserving encryption, PACE’s searchable encryption is
susceptible to inference attacks, and is not suitable for data
with a known distribution [10].

3) Visibility-Based Encryption: Accumulo controls access to
cells based on binary expressions over attributes—for example,
doctor OR (nurse AND admin)—called the visibility
expression. PACE supports encrypting fields not with a global
key (field-level and searchable encryption), but based on this
visibility expression. We have named this functionality crypto-
graphically enforced, attribute-based access control (CEABAC).
CEABAC is implemented using access trees [8]. Using an
identity-based encryption scheme [8] would be prohibitively
slow, and instead CEABAC is implemented using symmetric
encryption. This results in significantly increased performance
at the cost of collusion-resistance (which is out of scope based
on our threat model). CEABAC is more fine-grained than either
field-level or searchable encryption, ensuring that a client not
only has the right key for the table, but also keys for the
attributes in the column visibility field.

To implement CEABAC, each Accumulo attribute (i.e.,
authorization) must have an associated attribute key.1 When

1The attribute keys can also be identified using a KeyId allowing for
multiple keys for a given attribute.

Visibility: doctor OR (nurse AND admin)
key

key

Edoctor(key)

key

keyα

Enurse(keyα)

keyβ

Eadmin(keyβ)

AND

OR

Output: Edoctor(key)||Enurse(keyα)||Eadmin(keyβ)

Fig. 3: CEABAC Encryption of a Key

encrypting a cell, a randomly generated key is used to encrypt
the cell, and then the randomly generated key is encrypted
using the appropriate attributes. AND first splits the random
key using additive secret sharing using XOR, where each
share is then encrypted with one of the attribute keys. OR
duplicates the key, with each duplicate key being encrypted
with a different attribute key. This process occurs recursively
to support arbitrary binary expressions, and the final result
is a collection of all the shares generated by processing the
visibility field. An example encryption is shown in Figure 3.

B. Signatures

To prevent an administrator from surreptitiously inserting or
modifying data, it is sufficient to digitally sign the data prior
to insertion. Signing data has the added benefit of providing
authenticity protection (i.e., attributing an author to each cell in
an Accumulo table). While signatures enable detection of the
insertion or modification of data, they cannot detect the removal
of data by the administrator. To accomplish this, authenticated
data structures can be used [14], though this functionality is
not currently supported by the PACE library.

To sign a record, the entire Accumulo cell is first hashed
using SHA-256. The hash of the cell is then signed using
one of the following signature algorithms: RSA with PKSC1
padding, RSA with PSS padding, DSA, or ECDSA. Finally,
the signed hash is stored in one of three locations:

1) Value field. The signed hash is prepended to the cell’s
value field. This is the default storage location. Clients
using the standard Accumulo API to query the database
will see the hashes in their query results and be unable
to interpret them.

2) Separate table. The signed hash is stored in a separate
table. This second table mirrors the first value, except
that the value field is replaced with the respective cell’s
signed hash. This storage scheme allows for clients using
the standard Accumulo API instead of PACE to still read
data as usual (without being able to verify its integrity
or authenticity, of course). This method has storage and
query overhead related to creating and querying a second
table in lockstep with the first.

3) Column visibility field. The signed hash is appended
as an OR clause to the existing visibility field—
i.e., (visibility) OR SIGNED_HASH. Tables us-
ing this storage scheme can be read by both PACE and
non-PACE clients, as non-PACE clients can safely ignore
the new visibility attribute. This method is more efficient
than storing data in a separate table, but it interferes with
Accumulo’s cell versioning system and therefore should
only be used if versioning is turned off for the table.

C. Key Management

The PACE library does not included a key management
system. Instead, PACE takes as input a key container that is
responsible for managing a user’s keys. The PACE library
includes implementations for containers (one for encryption,
one for signatures) that store and retrieve a user’s keys from
the local file system. Also included are scripts for generating
and updating these key containers. Developers are free to
develop alternative containers—for example, a key container
that stores a local cache of the user’s keys but also queries
a key management service (KMS) when additional keys are
needed.

IV. EVALUATION

We benchmarked PACE against a cloud-hosted Accumulo
instance with a single tablet server. The benchmarks were
run on commodity hardware (2014 MacBook Pro) and were
executed using the Java Microbenchmark Harness (JMH).2 We
measured the performance of PACE’s encryption and signature
functionality, both for reading and writing records, and for a
various set of parameters.

For each benchmark, performance is measured as an average
of 250 runs. First, 5 warmup runs are executed to ensure that
the Java JVM was in a stable state. Next, 25 measurements
runs were conducted. Finally, this process was repeated (i.e.,
forked) in 10 separate JVM instances.

For each fork, the necessary Accumulo tables were created,
and after the fork they were deleted. All the data used was
randomized, but it was generated using a known seed to ensure
that the tests all used the same random data. In each run, we
measured the total time taken to complete the run, including the
time to setup PACE and to read or write the records. Instead of
reporting on total time, we report on throughput—the number
of reads or writes per second.

The purpose of this evaluation is to compare the performance
of PACE-enabled versus non-PACE-enabled clients. Specifi-
cally, it does not explore parallelizing the client software or
increasing the number of tablets.

1) Paramaters: We tested the following parameters:
• Size of the key fields. We tested making the key fields—

row, column family, and column qualifier—small (10
bytes) and large (100 bytes).

• Size of the value field. We tested making the value field
small (10 bytes) and large (1,000 bytes).

2JMH allows for fine-grained measurements at microsecond granularity.

key=10 bytes,
value=10 bytes

key=10 bytes,
value=1,000 bytes

key=100 bytes,
value=10 bytes

key=100 bytes,
value=1,000 bytes

Data Size

0

20000

40000

60000

80000

100000

120000

O
p
e
ra

ti
o
n
s

/
se

c

10
39

55

99
84

36
72

8

85
1118

19
3

61
12 13

69
2

55
28

52
07

33
48

45
28

30
38

13
71

8

55
21 10

72
8

49
70

Accumulo

Value

Entry

Searchable

(a) Write

key=10 bytes,
value=10 bytes

key=10 bytes,
value=1,000 bytes

key=100 bytes,
value=10 bytes

key=100 bytes,
value=1,000 bytes

Data Size

0

5000

10000

15000

20000

25000

30000

35000

O
p
e
ra

ti
o
n
s

/
se

c

32
62

0

48
04

12
47

8

38
54

15
03

3

41
43

89
08

35
0358

42

29
17 45

78

25
71

12
87

2

39
54

79
96

33
45

Accumulo

Value

Entry

Searchable

(b) Read

Fig. 4: Encryption performance by configuration and data size

• Number of rows. We tested reading/writing various
numbers of rows in each operation—1 row, 10 rows, 100
rows, and 1,000 rows.

• Number of columns. For each row read/written, we
varied the number of columns inserted—1 or 10 columns.
The total number of entries written equals number of rows
multiplied by number of columns.

2) Encryption: For encryption, we tested the following
configurations: Accumulo with no encryption (Accumulo), field-
level encryption of a single column (Field-level), encrypting
a single column with CEABAC (CEABAC-Column) encrypt-
ing the whole entry with CEABAC (CEABAC-Entry), and
encrypting the key with searchable encryption and the value
with CEABAC (Searchable).

3) Signatures: For signatures, we tested the following
configurations: Accumulo with no signatures (Accumulo),
storing the signature in the value field (Value), storing the
signature in the column visibility field (Visibility), and storing
the signature in another table (Table). We also compared various
signature algorithms: RSA with PKSC1 padding (RSA-PKSC1),
RSA with PSS padding (RSA-PSS), DSA (DSA), and ECDSA
(ECDSA).

A. Encryption Results

Figure 4 gives the performance statistics as we vary the size
of the data read/written. In this figure, the batch size has been
held constant (1000 rows, 10 columns). From this figure, it is
clear that encryption with PACE has a significant impact on
performance—in the worst case, it reduces the rate of inserts
by a factor of 20 and reads by a factor of 6. Still, for writes

10 100 1,000 10,000

Batch Size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
O

p
e
ra

ti
o
n
s

/
se

c

35
4

24
37

64
01

85
11

30
8

18
85

42
68

55
28

27
6

14
47

27
25 30

38

29
4

17
58

38
64

49
70

Accumulo

Value

Entry

Searchable

(a) Write

10 100 1,000 10,000

Batch Size

0

500

1000

1500

2000

2500

3000

3500

4000

O
p
e
ra

ti
o
n
s

/
se

c

39
5

22
24

35
85 38

54

37
8

20
24

32
33 35

03

36
4

17
88

24
16 25

71

37
0

19
96

31
08 33

45Accumulo

Value

Entry

Searchable

(b) Read

Fig. 5: Encryption performance by configuration and batch size

with higher data-size, PACE’s performance is reasonable—in
the best case, 35% reduction for writes and 10% for reads.

Figure 5 also shows the comparative performance cost of
each encryption configuration. In general, the fewer fields
encrypted, the faster the encryption. Also, CEABAC is slower
than using field-level searchable encryption (compare “Search-
able” and “Entry” performance). This is due to the fact that
CEABAC requires many possible encryption operations—one
per attribute in the visibility expression.

Figure 5 describes what happens as the number of
writes/reads is varied (row count multiplied by a constant
column count of 10) as the data size is held constant (100
byte key fields, 1000 byte value field). This figure shows
that for low numbers of operations, Accumulo’s overhead
dominates PACE’s overhead. Still, as the number of operations
increases, PACE’s overhead becomes more significant, although
the difference is not nearly as drastic as varying size—in the
worse case, 65% reduction for writes and 35% for reads.

Based on our performance measurements, we note that PACE
has reasonable overhead in the following instances. First, when
data sizes are large, this consideration dominates all others, as
for large data sizes PACE has reasonable overhead even when
other parameters are less favorable. Second, when the number
of operations is relatively small, PACE’s overhead is tolerable.
Finally, PACE may be suitable when a high rate of reads is
more important than a high rate of writes.

B. Signature Results

Figure 6 and Figure 7 give the performance metrics for each
of the different signature configurations. Signatures all have

key=10 bytes,
value=10 bytes

key=10 bytes,
value=1,000 bytes

key=100 bytes,
value=10 bytes

key=100 bytes,
value=1,000 bytes

Data Size

0

20000

40000

60000

80000

100000

120000

O
p
e
ra

ti
o
n
s

/
se

c

10
45

11

10
01

3

36
92

9

85
59

64
19

39
66

61
50

39
2971

05

41
56

62
46

38
8668

18

40
82

54
44

35
65

Accumulo

Value

Column

Table

(a) Write

key=10 bytes,
value=10 bytes

key=10 bytes,
value=1,000 bytes

key=100 bytes,
value=10 bytes

key=100 bytes,
value=1,000 bytes

Data Size

0

10000

20000

30000

40000

50000

O
p
e
ra

ti
o
n
s

/
se

c

45
41

9

53
06

18
41

6

44
85

14
19

3

45
21

10
83

3

39
19

13
21

0

43
89

10
19

4

38
32

10
44

6

34
37 54

12

28
71

Accumulo

Value

Column

Table

(b) Read

Fig. 6: Signature performance by configuration and data size

10 100 1,000 10,000

Batch Size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

O
p
e
ra

ti
o
n
s

/
se

c

36
2

24
82

64
26

85
59

30
3

15
98

33
17 39

29

30
3

15
93

32
96 38

86

17
0

10
76

27
44

35
65

Accumulo

Value

Column

Table

(a) Write

10 100 1,000 10,000

Batch Size

0

500

1000

1500

2000

2500

3000

3500

4000

4500

O
p
e
ra

ti
o
n
s

/
se

c

69
4

29
68

38
80

44
85

58
8

21
62

29
11

39
19

57
8

20
77

27
90

38
32

33
1

15
42

23
51

28
71

Accumulo

Value

Column

Table

(b) Read

Fig. 7: Signature performance by configuration and batch size

key=10 bytes,
value=10 bytes

key=10 bytes,
value=1,000 bytes

key=100 bytes,
value=10 bytes

key=100 bytes,
value=1,000 bytes

Data Size

0

1000

2000

3000

4000

5000

6000

7000

O
p
e
ra

ti
o
n
s

/
se

c

10
32

94
7

10
21

90
0

87
6

81
2

86
5

79
2

21
02

17
44 20

20

16
95

64
19

39
66

61
50

39
29

RSA-PKCS1

RSA-PSS

DSA

ECDSA

(a) Write

key=10 bytes,
value=10 bytes

key=10 bytes,
value=1,000 bytes

key=100 bytes,
value=10 bytes

key=100 bytes,
value=1,000 bytes

Data Size

0

2000

4000

6000

8000

10000

12000

14000

16000

O
p
e
ra

ti
o
n
s

/
se

c

14
30

5

45
19

10
85

7

39
48

14
19

3

45
21

10
83

3

39
19

11
06

10
64

10
92

10
63

30
21

28
34

30
36

28
85

RSA-PKCS1

RSA-PSS

DSA

ECDSA

(b) Read

Fig. 8: Signature performance by algorithm and data size

a significant performance impact, though as usual as the data
size or batch size increases, the performance overhead also
decreases. Interestingly, the different signature configurations
all perform similarly, though there is still a strict ordering
on performance ordering— (from best performing to worst)
storing signatures in the value, storing signatures in the column
visibility, and storing signatures in a separate table.

Figure 8 and Figure 9 compares the various different
signature algorithms. For writing entries, ECDSA has by far the
highest performance, with RSA having the worst performance.
The situation is reversed for reading entries, with ECDSA being
slower and RSA being faster; still, as the data size increases,
ECDSA’s and RSA’s performance become more similar. DSA’s
performance is poor for both reads and writes.

V. SUMMARY

In this paper, we described Proactively-secure Accumulo
with Cryptographic Enforcement (PACE), a library for pro-
tecting data stored in Accumulo, giving cloud tenants back
control of their data. PACE is a fully functioning drop-in
replacement for the existing Accumulo API. We measured
PACE’s performance and found that while it does impact
performance, this impact is minimized for entries with large
data sizes, low volumes of read and writes, and for read
operations in general. While PACE does add significant
overhead, it still allows for throughput that would be acceptable
for many applications.

10 100 1,000 10,000

Batch Size

0

500

1000

1500

2000

2500

3000

3500

4000

O
p
e
ra

ti
o
n
s

/
se

c

24
8

70
8 89

1
90

0

23
2

62
9 77

1
79

2

28
0

10
98

15
98 16

95

30
3

15
98

33
17

39
29

RSA-PKCS1

RSA-PSS

DSA

ECDSA

(a) Write

10 100 1,000 10,000

Batch Size

0

500

1000

1500

2000

2500

3000

3500

4000

O
p
e
ra

ti
o
n
s

/
se

c

60
9

21
49

28
76

39
48

58
8

21
62

29
11

39
19

37
6 71

9 87
2 10

63

43
6

10
83

16
80

28
85

RSA-PKCS1

RSA-PSS

DSA

ECDSA

(b) Read

Fig. 9: Signature performance by algorithm and batch size

ACKNOWLEDGMENT

The authors would like to thank Ben Kaiser, Bryan Richard,
Sarah Scheffler, Mayank Varia, and Arkady Yerukhimovich for
their earlier work on the PACE project.

REFERENCES

[1] S. UK, “Why move to the cloud? 10 benefits of cloud com-
puting,” https://www.salesforce.com/uk/blog/2015/11/why-move-to-the-
cloud-10-benefits-of-cloud-computing.html, accessed: 2017-04-15.

[2] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout et al., “Achieving
100,000,000 database inserts per second using accumulo and d4m,” in
High Performance Extreme Computing Conference (HPEC), 2014 IEEE.
IEEE, 2014, pp. 1–6.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, p. 4, 2008.

[4] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–
178. [Online]. Available: http://doi.acm.org/10.1145/1536414.1536440

[5] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 85–100.

[6] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
database system,” Cryptology ePrint Archive, Report 2016/591, 2016,
http://eprint.iacr.org/2016/591.

[7] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally,
R. Shay, J. D. Mitchell, and R. K. Cunningham, “Sok: Cryptographically
protected database search,” https://arxiv.org/pdf/1703.02014.pdf, 2017.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” in Proceedings of the
13th ACM conference on Computer and communications security. Acm,
2006, pp. 89–98.

http://doi.acm.org/10.1145/1536414.1536440
http://eprint.iacr.org/2016/591

[9] M. G. Solomon, V. Sunderam, and L. Xiong, Towards Secure Cloud
Database with Fine-Grained Access Control. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 324–338. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-43936-4 21

[10] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 644–655.

[11] D. Harkins, “Synthetic Initialization Vector (SIV) Authenticated
Encryption Using the Advanced Encryption Standard (AES),” RFC
5297, Oct. 2008. [Online]. Available: https://rfc-editor.org/rfc/rfc5297.txt

[12] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. ACM, 2004, pp.
563–574.

[13] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-preserving
symmetric encryption,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2009, pp. 224–
241.

[14] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and
S. G. Stubblebine, “A general model for authenticated data structures,”
Algorithmica, vol. 39, no. 1, pp. 21–41, 2004.

http://dx.doi.org/10.1007/978-3-662-43936-4_21
https://rfc-editor.org/rfc/rfc5297.txt

	Introduction
	Background and Related Work
	Accumulo
	Threat Model
	Related Work

	Architecture
	Encryption
	Field-level Encryption
	Searchable Encryption
	Visibility-Based Encryption

	Signatures
	Key Management

	Evaluation
	Paramaters
	Encryption
	Signatures

	Encryption Results
	Signature Results

	Summary
	References

