
Augmenting Centralized Password Management
with Application-Specific Passwords

Trevor Smith
Brigham Young University
tsmith@isrl.byu.edu

Scott Ruoti
MIT Lincoln Laboratory

scott@ruoti.org

Kent Seamons
Brigham Young University
seamons@cs.byu.edu

ABSTRACT
Password authentication is the most prevalent form of
authentication; however, passwords have numerous usability
issues. For example, due to the large number and high
complexity required of passwords, users frequently reuse and
choose weak passwords. One way to address these problems
is to centralize password management by using a password
manager or single sign-on. While this centralizing approach
can improve a user’s security, it also magnifies the damage
caused by a compromise of the user’s master password. In
this paper, we describe a new approach to enhance
centralized password management using application-specific
passwords. This approach prevents the compromise of a
master password from immediately compromising all
associated applications and instead, requires the attacker to
conduct further online attacks against individual
applications. We detail five possible system designs for
application-specific passwords and describe our plans for
user studies to test the acceptance and usability of this
approach.

1. INTRODUCTION
Passwords are the most common form of authentication,
and their problems are legion. Still, their combination of
usability and deployability have made it difficult for more
secure alternatives to displace them [11].

Users have a large number of applications, both local and
remote, that they authenticate to using a password. Ideally,
a user would have a unique password for each application
that was secure enough to survive an offline attack.
Unfortunately, the sheer number of applications and
limitations on human memory makes this ideal intractable.
Instead, users commonly choose weak passwords and reuse
their passwords across many applications.

Two common solutions to this problem involve centralizing
passwords, either through a password manager or a single
sign-on (SSO) system. Password managers (e.g., 1Password,
LastPass) generate random passwords and manage those

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Who Are You?! Adventures in Authentication (WAY 2017) July 12, 2017,
Santa Clara, California.

passwords for users, only requiring the user to remember a
single master password to unlock their password manager.
SSO (e.g., Google OAuth 2.0, Facebook Connect) allows a
user to authenticate to many different applications using
a single global account and its associated password. In
both cases, the hope is that if users need to select fewer
passwords, then those passwords will be much stronger than
the passwords currently selected by users.

While password managers and SSO both significantly improve
the usability of passwords, they introduce a single point of
failure where a system compromise has the potential to
be much more damaging than the compromise of a single-
application account. Users are cognizant of this limitation,
as demonstrated by a recent usability study of authentication
methods conducted by Ruoti et al. [20]. During the study,
users indicated that they liked SSO, but that they were
reluctant to trust a single third party (i.e., password manager
or SSO identity provider) with information and access to
potentially all of their accounts.

Several users suggested that SSO could be augmented to
include an additional application-specific password for
high-value applications. The benefit of this augmentation is
that even if a user’s SSO account is compromised, an
attacker does not automatically have access to the user’s
high-value applications. While the suggestion was made
regarding SSO, it is equally applicable to password
managers. Interestingly, the suggested augmentation
represents a middle-of-the-road solution between the
extremes of requiring each application to have its own
unique, user-memorized password and centralizing all
passwords into a single password manager or SSO account.

In this paper, we describe our attempts to design systems
that would augment centralized password management with
application-specific passwords. Additionally, we describe our
plans for user studies to test the acceptance and usability of
this approach. At the workshop, we look forward to feedback
and discussion of this approach to authentication, our system
designs, and the proposed user study.

2. BACKGROUND
In this section, we describe password managers and single
sign-on (SSO). We also describe the threat model that
motivates our work.

2.1 Password Managers
Password managers serve three purposes. (1) They help
users generate random passwords that satisfy specific



password policies while also maximizing entropy. (2) The
password manager stores passwords for the user—both
generated passwords and those set by the user—in a
password vault. This functionality is essential, as it is
infeasible for users to memorize many of the randomly
generated passwords. To access the passwords in the user’s
vault, they must input the master password that was used
when the vault was created. (3) The password manager can
automatically enter the appropriate password into
applications the user is authenticating to. All password
managers support (2), most support (1), and there is an
ongoing debate whether (3) should be supported as it has
various security implications [17]. Many password managers
store the password vault in the cloud, allowing users to
synchronize this vault to all of their devices. There are
many password managers, including password managers
built into browsers (e.g., Chrome, Edge, Firefox), browser
extensions (e.g., LastPass [7]), and standalone applications
(e.g., LastPass [7], 1Password [1]).

2.2 Single Sign-on (SSO)
Single sign-on allows users to authenticate to a relying party
(RP) by way of an identity provider (IDP). First, a user
authenticates to their IDP and then specifies the RP to
which they want to prove their identity. Second, the IDP
creates a signed attestation of the user’s identity—this
attestation is time-bounded and specifies the RP it is
intended for—and sends it to the user. Third, the user
presents the signed attestation to the RP. Finally, the RP
validates the attestation using a long-term secret shared
between the RP and IDP. There are many SSO systems [2,
6, 8, 3, 10, 16, 9, 15], with the two most widely-deployed
SSO systems being Google OAuth 2.0 [5] and Facebook
Connect [4].

2.3 Threat Model
Our threat model includes four parties: the user, the relying
party, an identity provider or cloud-based password manager,
and the adversary. The adversary’s goal is to impersonate
the user to the relying party, without alerting any other
party to this impersonation. There are several approaches
the adversary can use to accomplish this goal:

1. The adversary can directly steal one or more of a user’s
passwords (e.g., phishing).

2. The adversary can steal the password database from a
relying party and conduct an offline attack against the
user’s password. If password sharing occurs, an attack
against one relying party might compromise multiple
relying parties.

3. The adversary can steal the password database from
the identity provider or cloud-based password manager
and conduct an offline attack against the user’s master
password.

In each case, we consider attacks where the attacker has
long-term access to the other parties as out of scope (e.g.,
key logger, insider threat at the identity provider). While
centralizing password management mitigates the second
attack vector, it potentially magnifies the damage of the
first and third attack vectors. Specifically, if the attacker

obtains the master password for the password manager or
SSO, they will gain access to a multitude of applications.
Alternatively, if the identity provider or cloud-based
password manager are not fully trusted, it is also possible
for these services to impersonate the user.

3. APPLICATION-SPECIFIC PASSWORDS
If a password manager’s password or an account password
for SSO—hereafter also referred to as a master password for
consistency—is compromised, all of the user’s other
applications immediately become compromised.1 This is a
natural consequence of consolidating all authentication data
into a central party.

To partially mitigate the damage of a compromised master
password, it is possible to decrease the level of
centralization, and introduce an additional
application-specific password for high-value sites. With
application-specific passwords, the compromise of a user’s
high-value site only occurs when there is a compromise of
both the master password and the site’s application
password. The design of any application-specific password
system must ensure that the loss of a master password does
not allow an offline attack against the application-specific
password. Instead, the attacker will need to perform an
online attack, which can be easily detected, or to also
compromise the reliant application. Importantly, this means
that the application-specific password must be remembered
by the user and cannot be stored by a password manager.
Also, application-specific passwords should ideally ensure
that any loss of data by the central party does not allow an
offline attack against the application-specific password.

Application-specific passwords are a middle-of-the-road
approach between fully centralized (Password Managers,
SSO) and fully decentralized password management (every
website has its own user-generated and remembered
password). Application-specific passwords are only intended
to augment centralized approaches in order to limit the
effect of a compromised central party by requiring
additional online attacks to be carried out against the
high-value applications. Specifically, these passwords will
likely be much shorter than master passwords, with the
user’s authentication security being predominantly derived
from the protection gained from the central party.

Florêncio et al. [14] describe the large chasm that exists
between the complexity of passwords that are strong enough
to resist an online attack compared to those that only need
to resist an off-line attack. Our design addresses these
differences by requiring the central party to generate strong
passwords resistant to offline attacks and relying on the user
to select passwords that thwart online attacks. This is less
demanding on the user than requiring them to manage
numerous strong passwords and does not require that they
place inordinate trust in the central party.

3.1 System Designs
We have identified five possible designs for adding an
application-specific password to password managers and/or
SSO.

1For simplicity, we assume that all accounts are managed by
either a password manager or SSO.



3.1.1 Application Password
After authenticating to an application using a password
manager or SSO, the application itself could present an
entry form for the additional application-specific password.
While this approach requires changing the application, it
does not require changing password managers or SSO
systems. This design does provide protections against a
stolen master password or a compromised central party.
The biggest drawback of this approach is that applications
have to self-identify as high-value, and users will likely not
have control of which applications offer this feature and
which do not.

3.1.2 Password Manager + Hashing
The password manager could be modified to require users to
enter two passwords for high-value applications. These two
passwords would then be hashed together, and the resulting
hash presented to the application. Importantly, the
password manager can generate and/or store only one of the
two passwords. The user must generate and remember the
application-specific password. This design requires
modifying the password manager, but not the applications.
It provides protections against a compromised master
password or password vault. If an RP’s password database
is stolen, it might be possible to perform an offline attack
against that specific password if both the password
manager-generated and user-generated passwords are weak.

3.1.3 Password Manager + User
Instead of changing the password manager to mix the
application password with the vault-stored password, the
user could handle this responsibility. When authenticating,
the password manager would fill in the application’s
password as normal, but then the user would append the
application-specific password onto the end of the auto-filled
password. The user could also adopt a more complex
strategy to mix in the application-specific password. This
approach has the same properties as Password Manager +
Hashing, except that it does not require modifying the
password manager. There is the potential for significant
usability challenges, as the password manager might
attempt to remember the full password (vault-stored
password + user-entered password) in order to auto-fill that
value in the future.

3.1.4 Modified SSO Protocol
The SSO protocol can be modified to incorporate information
about the application-specific password into the SSO signed
attestation from the identity provider. The application could
then use a verifier stored locally, and not at the SSO, to verify
the application-specific part of the signed attestation. This
approach requires modifying both the application and the
SSO server. This approach provides protection against theft
of the master password or compromise of the SSO server.
Unlike password manager-based approaches, even if the data
stored at the SSO is stolen, it cannot be used by itself to
conduct an offline attack against the user’s credentials for
that application.

3.1.5 SSO + Challenge
The SSO authentication flow could be modified to include an
application-specific password entry screen following entry of
the SSO password. The identity provider presents the screen
and verifies the application-specific password. This approach

obviates the need to modify applications. While it does
protect against the loss of a master password, compromise
of the identity provider makes it possible for an attacker to
conduct an offline attack against both the master password
and application-specific passwords.

4. ANALYSIS
In this section, we analyze the the security2, deployability,
and usability of the five design alternatives. Table 1
summarizes the key differences between these approaches.

4.1 Security
All five system designs succeed at preventing a lost master
password from immediately compromising high-value
applications. In each case, after the compromise of a master
password, the attacker will still need to conduct an online
attack against the application-specific passwords. The
security of the application would then depend on its ability
to detect and defend against online attacks.

Of the five systems, only SSO + Challenge fails to protect
high-value sites when the password database is stolen from
the SSO. In this case, the stolen password database can be
used to perform an offline attack against the application-
specific passwords. This limitation is a trade-off for this
design not requiring modification of applications.

While outside the threat model, our system designs also help
prevent against a malicious central party impersonating the
user. In this case, the central party must conduct an online
attack against the application-specific passwords (except in
the case of SSO + Challenge). Similarly, an attacker with
non-administrative access to a user’s unlocked device (e.g.,
laptop left open at a table) cannot access the user’s high-value
sites because they are protected by an application-specific
password that cannot be “remembered” by the system for
later use.

Password manager-based approaches (including existing
password managers) have a limitation in that a compromise
of a given application is sufficient to allow impersonation to
that application. Specifically, an adversary that steals a
password database can conduct an offline attack to guess
the users’ passwords. These stolen passwords can then be
used to impersonate users at the previously-compromised
application. Password managers still improve on vanilla
passwords in that the compromised password will not be
used for other applications. Also, in many cases password
managers will have generated passwords that can survive
most offline brute-force attacks. Regardless, this is weaker
than SSO-based approaches which do not rely on the
security of individual applications to protect authentication.

Though centralized authentication systems create a single
point of failure, they also provide a single point of entry,
meaning that access to the central store is necessary to
access any associated account. Security enhancements to the
central store necessarily increase the security of all associated
accounts. Analyzing the specific effects of centralized security
modifications on associated accounts is beyond the scope of
this proposal and is left for future investigation. However,
we note that mitigating the consequences of a single point of

2The security analysis assumes adherence to best practices
when choosing passwords resilient to online attacks.



System Design R
eq

u
ir

es
n
o

ch
a
n
g
e

to
a
p
p
li
ca

ti
o
n
s

R
eq

u
ir

es
n
o

ch
a
n
g
e

to
p
a
ss

w
o
rd

m
a
n
a
g
er

s

R
eq

u
ir

es
n
o

ch
a
n
g
e

to
S
S
O

S
to

le
n

m
a
st

er
p
a
ss

w
o
rd

d
o
es

n
o
t

co
m

p
ro

m
is

es
a
ll

a
p
p
li
ca

ti
o
n
s

C
o
m

p
ro

m
is

ed
ce

n
tr

a
l

p
a
rt

y
d
o
es

n
o
t

co
m

p
ro

m
is

e
a
ll

a
p
p
li
ca

ti
o
n
s

S
to

le
n

a
p
p
li
ca

ti
o
n

d
a
ta

d
o
es

n
o
t

a
ll
ow

im
p

er
so

n
a
ti

o
n

to
th

a
t

a
p
p
li
ca

ti
o
n

Notes

(§3.1.1) Application Password / 1

(§3.1.2) Password Manager + Hashing —
(§3.1.3) Password Manager + User — Potential usability hurdles
(§3.1.4) Modified SSO Protocol —
(§3.1.5) SSO + Challenge — All verifiers stored at SSO

1 Empty dot if used with password managers and full dot if used with SSO.

Table 1: System Design Comparison

failure with an application-specific password does not remove
the security benefits gained with a single point of entry.

4.2 Deployability
One hurdle to deploying application-specific passwords is
the need to modify existing systems. The first set of
columns in Table 1 demonstrates the different deployability
characteristics of each system design.

The Application Password design can be unilaterally
deployed by applications without changing password
managers or SSO systems. The password manager designs
work with existing applications, and the Password Manager

+ User design also requires no modification to existing
password managers either. This comes with a trade-off that
the password manager might try to memorize the
application-specific password, a potentially significant
usability issue. Finally, the SSO designs require changing
SSO, but by relaxing the security guarantees SSO +

Challenge can be implemented without a change to existing
applications.

The deployment of both Application Password and
Modified SSO Protocol are limited by the need to modify
applications. As there are a large number of applications, it
is unlikely that all will be modified. Partial deployment
limits user choice. Users may be unable to protect all of
their high-value sites. Also, some applications may not let
users elect to forgo the additional password for less
important accounts.

4.3 Usability
There are many potential usability hurdles for application-
specific passwords. For example, while it was users that
suggested application-specific passwords, do they find these
extra passwords overly burdensome to use on a consistent
basis? Alternatively, how do users select their application-
specific passwords? Are they unique from each other? How
much entropy do they provide? We propose several user
studies to answer these questions and evaluate their security
implications.

4.3.1 Attitude and Acceptability Study
We plan to conduct user interviews that explore user’s
attitudes towards centralized password management and
application-specific passwords. Additionally, we will review
the five possible designs with the users, and determine
which they find most acceptable. We will also work with
users to establish possible UI designs. Finally, we will
validate the results from the interviews with a large
Mechanical Turk survey.

4.3.2 Laboratory Usability Studies
We will conduct a laboratory user study to validate that
users truly do prefer application-specific passwords to
existing systems and to obtain user feedback on prototype
implementations of the five designs. These usability studies
will leverage the methodology of Ruoti et
al. [20]—multi-round, within-subject evaluations of multiple
systems, where systems are compared using the System
Usability Scale (SUS) [12]. In these studies, we will ask
post-study questions related specifically to application
specific passwords.

4.3.3 Longitudinal Studies
There is a strong risk that users might enjoy
application-specific passwords in a laboratory setting but
would not use them in a real-world setting. To evaluate the
long-term acceptability of application-specific passwords, we
plan to conduct a longitudinal study of the system design
rated as most usable in the laboratory studies. We will have
participants use the system over the course of a month,
measuring how many sites they protect with an
application-specific password and how often they
authenticate to those sites. During the study, we will ask
users to report their experiences in an authentication
journal. We will also conduct post-study debriefing
interviews to gather valuable qualitative feedback.

5. RELATED WORK
Ruoti et al [20] evaluated several single sign-on systems
(Google OAuth 2.0, Facebook Connect, and Mozilla
Personas). They found that users preferred these systems to
alternative authentication schemes. Still, participants in the



study expressed concern that a compromise of the identity
provider would result in the immediate compromise of all of
their other applications. While participants were willing to
accept that for low-value applications, they indicated that
they wanted more security for their high-value applications.
Earlier, Sun et al. [21] conducted a user study of OpenID, a
single sign-on system. Some participants in that study also
expressed concern that the identity provider represents a
single point of failure.

Ross et al. [19] introduced PwdHash, a password scheme
that hashes a user’s master password with the domain name,
producing a unique password for each domain. To trigger
this hashing, users preface their password with “@@”. This
approach does not prevent offline attacks against the user’s
password. In contrast, our system design uses a second
user-supplied application-specific password, and not a static
domain name, to augment the master password.

Llewellyn-Jones and Rymer [18] describe an approach to
defeating PwdHash’s client-side hashing of the user’s
password and the domain name of the website. Our
Password Manager + Hashing system design will need to
consider how to prevent a similar attack.

Chiasson et al. [13] explored the usability of password
managers by conducting a 26-person user study comparing
PwdHash and Password Multiplier. The study discovered
significant usability issues with both systems even though
usability was considered during system design, illustrating
the importance of user studies. The goal of our proposed
user study is to determine whether our proposed systems
have similar usability flaws.

As indicated by Bonneau et al.[11], Two-factor authentication
systems offer similar and in many cases stronger security
protections; however, two-factor authentication can introduce
a non-negligible usability burden on users. One of the driving
factors for using an application specific password was to
retain as much usability gained by password managers and
SSO over traditional passwords. Ultimately, a compromise
must be made between usability, deployability, and security.
Our proposed systems sacrifice potential security benefits to
retain significant usability and deployability characteristics.

6. CONCLUSION
While the centralization of password management into
password managers and single sign-on (SSO) comes with
strong benefits, it also magnifies the damage of a user
having their remaining password—their master
password—compromised (e.g., phishing attack). Enhancing
centralized password management with application-specific
passwords for high-value applications can mitigate this
damage. This approach prevents the loss of a master
password from compromising all applications, instead of
requiring that the attacker conducts online attacks against
individual applications.

In this paper, we describe five possible system designs for
application-specific passwords—Application Password,
Password Manager + Hashing, Password Manager + User,
Modified SSO Protocol, and SSO + Challenge. We also
evaluate the security and deployability trade-offs for each of
these designs. Finally, we describe several planned users
studies to explore the acceptance and usability of
application-specific passwords.

7. REFERENCES
[1] 1password. https://1password.com/.

[2] CardSpace. http://msdn.microsoft.com/CardSpace.

[3] Central Authentication Service.
http://www.jasig.org/cas.

[4] Facebook connect.
https://developers.facebook.com/blog/post/2008/05/09/announcing-
facebook-connect/.

[5] Google OAuth 2.0.
https://developers.google.com/accounts/docs/OAuth2/.
[Online; accessed 2014/11/20].

[6] Higgins: Open Source Identity Framework.
http://www.eclipse.org/higgins/.

[7] Lastpass. https://www.lastpass.com/.

[8] Liberty Alliance Project. http://projectliberty.org/.

[9] OpenID. http://openid.net/.

[10] Shibboleth. http://shibboleth.internet2.edu/.

[11] J. Bonneau, C. Herley, P. C. Van Oorschot, and
F. Stajano. The quest to replace passwords: A
framework for comparative evaluation of web
authentication schemes. In Symposium on Security and
Privacy (SP). IEEE, 2012.

[12] J. Brooke. SUS—a quick and dirty usability scale. In
Usability Evaluation in Industry. CRC Press, Boca
Raton, FL, 1996.

[13] S. Chiasson, P. van Oorschot, and R. Biddle. A
usability study and critique of two password managers.
In 15th USENIX Security Symposium, 2006.

[14] D. Florêncio, C. Herley, and P. C. Van Oorschot. An
administrator’s guide to internet password research. In
28th Large Installation System Administration
Conference (LISA14), 2014.

[15] E. Hammer-Lahav, D. Recordon, and D. Hardt. The
oauth 2.0 authorization protocol. draft-ietf-oauth-v2-18,
8, 2011.

[16] J. T. Kohl, B. C. Neuman, and T. Y. Ts’o. The
Evolution of the Kerberos Authentication Service. In
Spring EurOpen Conference, 1991.

[17] Z. Li, W. He, D. Akhawe, and D. Song. The emperor’s
new password manager: Security analysis of web-based
password managers. In USENIX Security, 2014.

[18] D. Llewellyn-Jones and G. Rymer. Cracking pwdhash:
A bruteforce attack on client-side password hashing. In
The 11th International Conference on Passwords
(Passwords 2016). Springer, 2017.

[19] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger password authentication using
browser extensions. In USENIX Security, 2005.

[20] S. Ruoti, B. Roberts, and K. Seamons. Authentication
melee: A usability analysis of seven web authentication
systems. In Proceedings of the 24th International
Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2015.

[21] S.-T. Sun, E. Pospisil, I. Muslukhov, N. Dindar,
K. Hawkey, and K. Beznosov. What makes users refuse
web single sign-on?: An empirical investigation of
OpenID. In Symposium on Usable Privacy and Security.
ACM, 2011.


