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Abstract

This thesis analyzes the use and impact of security and signing keys on Github,

the foremost public code development platform. These keys are used for developer

authentication and code commit signing, but little research has been done on the

usage of these keys. We set out to collect every available key associated with a

Github user and performed quantitative analysis on the gathered data. Our data was

gathered using Github’s publicly available REST and GraphQl API’s. We found that

very few users create keys for signing commits, and there are a number of keys on

the database that could be considered weak by modern standards. Personal keys for

user identification is not widely accepted. A better understanding of how developers

interact with these systems is needed to develop software that is both usable and

secure.
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Chapter 1

Introduction

Git is a prominent code versioning tool used by developers to create software. Code

versioning is used to keep track of changes from multiple users in a single repository.

Git tracks changes rather than versions. These changes in are pushed, or uploaded,

by developers in the form of a commit. Virtually all collaborative development

projects utilize some form of code versioning. One of Git’s primary features is

allowing the majority of development to be done locally on a developer’s personal

machine. Local development reduces network overhead and allows for developers to

work from any location. Git based systems are the most widely used method for code

development and collaboration. There are various implementations of this system

such as Bitbucket, Github, and Gitlab.

Github is the most used git implementation [23]. There are more than 300 million

public repositories on Github. Many of these are widely viewed and depended upon

in production systems. Github also acts as a platform for code deployment. Any

public repository can be pulled and executed by any Github user. Repositories also

contain an optional releases section, this allows developers to offer statically generated

executable files for download. Github offers a service called Actions that allows for

automatic deployment to online services that support web-hooks like websites or
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cloud servers. This means a compromised repository could spread malicious software

to users, in some cases automatically.

Github is designed for collaboration. Any user can fork, or copy, a public Github

repository to their local machine edit the code, then attempt to merge their changes

into the code base. It is up to the owners of repositories to vet these merge requests

by checking that the code itself is sound or that the merge is coming from a trusted

developer. Admins of the original repository have to merge, or approve, the changes

made to the repository. While this makes open source programming and cooperation

convenient, it also creates a significant vector for threat actors to inject malicious

code into a development pipeline.

Any machine can be used to upload code to a repository. Github’s security

is dependent on strong access control and this is achieved via cryptographic key

authentication. Users generate a key that is stored securely on their local machine.

Github is able to use this key to verify the users access rights to a given repository.

This removes the need for a password when pushing or pulling code. As of 2021,

Github requires the usage of these asymmetric SSH keys where previously it was

optional. The strength and effective usage of these keys are critical. They effectively

act as passwords and have the same security implications if leaked or broken. A

malicious actor with access to a private key could arbitrarily upload code to any

repository the original key owner has access to. Github has made changes to its

security policy in recent years, but there is no research on the effective strength and

usage of these keys.

Another concern with the security of Github’s development pipeline is developer

identification. Github pushes and commits are linked to an email by default, however,

there is no verification system in place to ensure these emails are valid or connected

to a user. This creates an opportunity for user impersonation. Authentication keys

somewhat mitigate this risk by ensuring that a user has access to a repository. They

do not, however, prevent malicious actors from attempting to push dishonest commits.

Developers within a repository could push code under a false name. False commits
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could be used to push malicious code, and put the blame on an innocent developer

within the repository. Since these commits are made locally, generation of false

commits can be automated at scale with relative ease. Commit meta data, like

timestamps, can also be manipulated. This allows for the creation of false commit

history on Github, which can be used to give accounts false credibility.

Github provides a solution to this issue of identification and commit integrity.

Commits can be signed digitally via an asymmetric cryptographic key. If a developer

has a signing key, they would be protected from impersonation by other users.

We have not been able to find research on the usage and effectiveness of security

keys on Github. We set out to answer a few questions about Github key security and

commit signing.

Research Question 1 What are the quality of authentication keys? General

information on keys like what algorithms are most commonly used, security

strength of keys, and how many keys users have, helps to understand the security

implications of the key system.

Research Question 2 What is the prevalence of and quality of signing keys.

Signing is optional, so we need to make a census of how many users choose

to engage with the system, and understand why they do it.

Research Question 3 How often are commits signed on Github? A user having

a signing key does not necessarily indicate they use the key frequently or at

all. The number of signed commits is more indicative of singing usage than the

number of users who have a key.

We performed the first wide scale qualitative analysis of cryptographic keys on

Github. We constructed a dataset of all Github users and their available public

keys. These keys can be accessed via the Github Rest API or Githubs GraphQl

implementation. GraphQl is a newer tool that allows requests for multiple users keys

at a time, but is not fully implemented with the API and currently can only retrieve
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authentication keys. For this reason we use Rest API to gather commit keys and

GraphQl to gather authentication keys.

There is a variety of key quality for signing keys. The majority of keys use popular

strong algorithms like RSA and ed25519 with standard key lengths. Github recently

changed their policy to phase out older SSH algorithms, but users are still allowed

to use a swath of key algorithms and key lengths. We have found weak keys are still

in use after the security update and weak algorithms are still being used to generate

new keys. We found that key usage is low in the case of commit singing. Less less

than 2% of users have any form of singing key. In addition to low usage, signing key

security is lower than login key security. The recent security update did not apply to

all commit signing keys. We have found a significant number of keys that would not

be allowed to be used for authentication in use for commit signing. This indicates a

lower priority on commit signing as a whole.
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Chapter 2

Related-Works

2.1 Background

Understanding the implications of key data on Github requires some context on

the two major systems in use; git commit systems and cryptographic key systems.

Cryptographic algorithms change frequently. Security standards change as new

algorithms are developed and old algorithms become insufficient. Knowing the history

of these algorithms and systems helps to understand current practice.

Updating code files and projects in Github is done via commits, which track

the changes made to a project. Sending a commit from a users local machine to

a shared github repository is called a push, and requires some form of verification.

The fastest and most convenient form of authentication is to use an ssh login key

where the public key is held by Github and the private key is stored locally on the

users machine. By default these commits are attributed to an account via their

locally attached email, however there is no validation ensuring the actual identity of

the developer. This provides a significant vector for someone to pose as a different

user when contributing to a Github repository. Users have the option to sign these

commits using an asymmetric signing key system like GPG or SSH. These keys are

similarly user generated and maintained.
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2.1.1 Cryptographic Keys

Github supports the use of security keys for two main purposes: login authentication

and commit signing. Users generate and maintain their own asymmetric keys and

upload their public keys to the platform. These keys are publicly available to all users

via Github’s API. These keys can be in SSH or GPG format, a variety of cipher suites

and key lengths are supported. There is some risk to allowing for a large number of

cipher suites as shown with various TLS attacks such as FREAK[30]. Allowing all

users to see what keys are being used introduces the risk of threat actors searching

for users with less secure configurations.

Asymmetric cryptographic keys are generated in a pair format, with one key

being public and one key being private. The private key is securely maintained by

the generator while the public key is given out to others. When communicating,

information is encrypted with the private key and decrypted with the public key.

This allows for a one way communication system that verifies the identity of the

private key holder. In Githubs model users generate a key pair, upload the public

key to their Github account, and maintain their private key locally.

We are looking at the usage of these keys for the sake of digital signatures and

verification. A digital signature algorithm uses a private key and the message content

of the item it is signing to create a signature. Then the public key is used in a

signature decoding algorithm. This allows for the public key to be passed along with

the message and signature itself. Then any person with the public key and message

can ensure the message was digitally signed by the owner of the corresponding private

key.

Security standards change frequently as technology improves and new systems are

created. Cryptographic algorithms change the most, new algorithms are introduced

every few years, and old algorithms are found to contain vulnerabilities. It is worth

knowing the difference in these algorithms to understand the implications our key

analysis.
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Four asymmetric algorithms are found on Github: RSA, ECDSA, Ed25519, and

DSA.

RSA (Rivest–Shamir–Adleman) Named after the first surnames of its three

developers, it was first described in 1977. Brute forcing RSA keys requires

solving a large prime number factoring problem. According to the National

Institute of Standards Technology (NIST) the current recommended key size

for RSA is 2048 bits long. RSA is among the slower asymmetric key algorithms,

and has large key sizes. RSA is still one of the most widely used asymmetric

algorithms in the world and represents a majority of the keys on Github.

ECDSA (Elliptic Curve Digital Signature Algorithm) ECDSA is built on El-

liptic Curve Cryptography, first described in 1985. ECDSA itself was accepted

by IEEE in 1999. Elliptic curves are a geometric algorithm with unique

properties making it ideal for key generation. Elliptic curve algorithms reduce

to a discrete log problem, making them very secure. ECDSA keys are much

smaller than RSA. 256 bit ECDSA keys are equivalent to 2048 bit RSA keys.

Elliptic Curve algorithms are also up to 1000 times faster than RSA algorithms.

The major drawback of ECDSA is its dependence on strong random numbers for

the nonce. A nonce is a type of seed value used in many forms of cryptography,

ECDSA needs a new nonce every time a signature is generated. If new random

numbers are not selected every time a signature is made, the key can be broken.

Sony had such an error on their server network in 2010 that led to a large security

breach [12].

EdDSA (Edwards-curve Digital Signature Algorithm) EdDSA is another el-

liptic curve variant developed in 2011. EdDSA is similar to ECDSA in many

regards. It has 256 bit keys for 128 bit security. The largest difference EdDSA

removed the need for random number generation on every signature. Instead

the nonce is generated hashing the private key and message. Besides removing a

potential vulnerability in the previous elliptic curve implementations, removing

7



random number generation also greatly reduces the effective runtime of the

algorithm. Ed25519 is the most popular EdDSA algorithm and has become the

standard on a variety of platforms including OpenSSH and GnuPG.

DSA Digital Signature Algorithm DSA is a system designed for digital signa-

tures. It was first proposed in 1991 and was accepted into FIPS in 1994.

DSA derives its security from a mixture of modular exponentiation and discrete

logarithm problems. DSA and RSA are similar in performance - RSA is better

at encryption, while DSA is better at decryption. However both applications

are often used in tandem so the difference becomes negligible. While DSA is

still a secure algorithm, it has a few qualities that make it more sensitive than

other solutions. DSA requires the generation of random value for signatures.

If these values are predictable, reused, or partially leaked, the signature can be

broken. These concerns have resulted in some developers moving away from the

algorithm. For instance Microsoft, the current owner of Github, has declared

this system weak and does not recommend its use. Github has partially phased

out the use of this algorithm for key generation.

There are two software platforms used for key signing on Github SSH and GPG. Both

platforms support every cipher suite found on Github.

SSH Secure Shell Hosting SSH is a network tunneling tool developed in 1995

and primarily used for secure remote access to an outside network. It primary

functionality is focused on connecting to remote machines. SSH security keys

are used for authentication. Git uses this system to authenticate its users

via cryptographic keys. Git does also allow the use of these keys for signing

commits.

GPG Gnu Privacy Guard GPG is an encryption software program primarily used

for digital signatures. It was developed in 1999 and remains one of the most

common solutions for digital signatures. GPG is only capable of signing commits
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on GitHub and cannot be used for remote authentication. GitHubs new key

standards did not include keys generated for GPG, which still allows for the use

of DSA algorithms for key generation.

2.2 Related Works

Github and general git systems are a popular topic of research. The majority of

work in the field is focused on the usability of git commit systems and finding ways to

improve them. One system often studied is merge conflict resolution. Gleph Ghiotto’s

paper On the Nature of Merge Conflicts: A Study of 2,731 Open Source Java Projects

Hosted by GitHub [10] as well as Gustavo Vale’s work Challenges of Resolving Merge

Conflicts: A Mining and Survey Study [29] are focused on the feasibility of automatic

merge resolution. They both performed large scale data collection of GitHub merges

and analyzed them for the sake of classification. Gustovo’s team also performed

surveys on developers to ask about conflict resolution strategies. They both came to

similar conclusions that merge resolutions fall into a variety of categories. A single

merge tool would not be able to properly reconcile all merges, but could potentially

eliminate a portion of them. There is some work on alternative software to help

manage commits. Matias Martinez focuses on creating a tool to perform fine grain

tracking of commits across a git repository [18] hoping to enable more fine tuned

control over changes. Anita Sarma’s on the other hand, suggests a non git based

solution called Palantir, whose purpose is to preemptively warn developers of conflicts

[28]. Both of these solutions are dependent on secure change history, and help to

highlight the relevance of author identification.

Security research on Github is usually focused on secrets that are erroneously

contained in the repositories themselves, such as API tokens or passwords used in

services outside of GitHub. Two papers focus on security key leakage on Github.

Michel Meli from North Carolina State University performed a quantitative analysis

over a large number of live GitHub repositories [19] and found that sensitive

9



information is being leaked in nearly 100,000 repositories. Runhan Feng’s team at the

Shanghai Jiao Tong University constructed a large data set using the GitHub API to

train a model capable of automatically detecting secret leakage on GitHub [6]. Their

work is focused on detecting leaked passwords rather than cryptographic secrets.

There is some work looking at GitHub as a security discussion platform, analyzing

human sentiment in commit messages and issues. A paper out of the University of

South Florida developed a model to detect mentions of security incidents from a

variety of platforms [11]. They suggest a sort of forecasting solution, comparing the

response time of various platforms when there is a security incident. A similar paper

by Daniel Pletea Security and Emotion: Sentiment Analysis of Security Discussions

on GitHub [25] looks to GitHub discussion specifically for sentiment analysis about

security. Using a natural language model they found nearly 10% of discussion on

GitHub is related to security, and that security discussion is more negative than other

topics. There is other work on potential vulnerabilities in the Github system. We

found two papers auditing the security of code generated by Github Copilot [24, 7].

Both papers found that around 40% of code generated by Copilot contained some

vulnerability.

There are a number of other projects gathering large amounts of data from

GitHub. We found a couple of papers on the quality of data collected from GitHub.

Eirini form the University of Victoria Canada published an analysis of git repositories

in 2014. [13]. This work highlighted the perils of treating all data on GitHub as

an open development project. They found that a large number of repositories are

inactive and two thirds are personal. Valerio Cosentino collected a number of other

works related to GitHub data and vetted the integrity of the methodology of those

works [5]. They express a concern with poor repeatability due to most works opting

to construct a data set from scratch. They recommend datasets be shared to allow

for better outside analysis. The largest collection of GitHub data to date comes from

our own University. Audris Mockus’s world of code project maps every public git

commit to authors and allows for large scale analysis of commit and repository data
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[16, 17]. The focus of all of these papers is on data quality or collection. Our work

differs as we are concerned with security and usability. A paper similarly focused on

security in the category is one on the threat model of Github Actions Workflows from

the University of Genova, Italy [4], They sampled a variety of workflows on GitHub.

Workflows are automated build and deployment systems provided by many of the top

git implementations. Out of 131,168 GitHub Workflows, they found 24,905 security

issues.

Asymmetric key usability is a broadly discussed topic. Secure email is a popular

research topic that has been published on multiple times within our own lab. We found

these papers in addition to our own that outline common problems and solutions to

the secure email. [27, 14, 8, 26, 15]. Each of these works contains significant discussion

on the difficulty of usable digital signature systems. They all cite key mismanagement

as a failure point in the secure email systems. We have also found some work on

improving SSH key systems. [3, 2]. These two works are focused on adding additional

layers of security to the existing SSH system. There has been some investigation of

key management and user interaction on the SSH platform. Oliver Gassers’s work

A deeper understanding of SSH: Results from Internet-wide scans [9] performed wide

scale IP scans to perform SSH handshakes with other networks. They constructed a

large data set used to appraise the current state of SSH usage. This work acted as

a general census and does not have a focus on security. Martin R. Albrecht’s team

did perform a security analysis on SSH in their paper A Surfeit of SSH Cipher Suites

[1]. They used a similar scanning method to Gasser. They used this scan to detect

how many networks use weak encryption cipher suites such as CBC. After performing

successful attacks on servers with these ciphers they recommended these weak ciphers

be removed from SSH. This work is similar to ours but comparatively broad in scope,

with no focus on code development.
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Chapter 3

Methodology

3.1 Data Collection

We scanned GitHub for data to answer our three research questions. What are the

quality of user keys on Github? What algorithms are the most used, how strong are

the keys themselves? This requires data on the keys themselves. Secondly we ask

how many users have commit signing keys. This includes corollary data about the

accounts the keys are tied too. For instance, how active is the account? How popular

are the repositories owned by the account? What systems are they using? Finally

how many commits are signed? How many repositories contain a signed commit?

How popular are repositories with signed commits?

We gathered data for each of these three research questions.

RQ1 Basic user information was quickly scraped from GitHub. Using this compre-

hensive list we began scanning all users for available keys. This includes both

authentication and signing keys. This process is slow, and expected to finish

around six months after the due date of this thesis. So a subset of around 20%

of the accounts will be analyzed in this paper.

RQ2 More advanced user information was collected from the API after the initial

list was constructed. This process is greatly expedited when all users identifiers

12



are known. This information includes most recent user activity, a count of all

active repositories, issues, and contributions.

RQ3 Using World of Code. We were able to perform large scale scans on all public

commits on Github. This allowed us to answer overarching questions about the

popularity of commit signing on Github.

We have collected profile information from all 88 million Github Users and are

actively collecting all keys present on their accounts, tables 3.1 and 3.2 show describe

the data collected. Our collection method used a Python script making constant API

requests to Github. This script is hosted on a docker instance on one of our personal

lab severs. We employed pythons ayncio libraries in order to make more requests per

hour. The request rate of the script is metered to evenly access the API in order to

make a more consistent access pattern and avoid mass requesting information from

Github in a short time.

Github’s primary API access system limits requests per user agent - the default

rate of requests a user agent has access to is 5000 per hour. Our initial strategy was

to create 50 Github accounts and generate an API access token on each account to

increase the number of requests we could make per hour. This method did not work as

these accounts did not have two-factor authentication, Github’s bot detection systems

flagged and banned accounts within a few days. After corresponding with personnel

at Github, we learned there was no way to save these accounts from banishment and

were guided to use a Github Oauth Application for large scale API access.

Our code base was retooled to use an Oauth Application created under the UTK

USER lab Github organization. Access tokens generated under this system are

required to be connected to a user account. Live user accounts from other researchers

within the USER lab were used to generate API access tokens. These tokens were

generated using Githubs device flow system. After generating the tokens we once

again made contact with Github Support via the support ticket system and were able
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Table 3.1: Data Collection. Main Pass

Name Description

Username Github user name.
UserId Integer Value Associated with the user, roughly

chronological.
NodeId Base64 Value Associated with the user.
SiteAdminStatus Whether or not the user is an enterprise admin.
UserType Specifies if the agent is an individual user or acting as

organization.
SigningKeys Any GPG or SSH keys associated with the User.
AuthKeys Any Authentication keys associated with the User.

Table 3.2: Data Collection. Secondary Pass

Name Description

Name User specified name (optional).
Location User specified location (optional).
Email User specified email (optional).
Updated Last time the user did anything on GitHub.
Organizations Number of Organizations the user is associated with.
Repositories Number of Repositories the user owns.
Recent Repositories Number of Repositories the user has committed to in

the past year.
Issues Number of issues associated with the user.
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to have the rate limit per hour increased to 12500 requests for tokens associated with

our Oauth Application.

The keys and identifying user information are stored in a Sqlite database. Sqlite

is a lightweight single file SQL implementation. A Python script makes many

simultaneous requests taking advantage of the async library to efficiently wait on

multiple processes. The request data is parsed and stored in the database as it is

retrieved. The Database is stored on the same server running the python-docker

instance.

These rate increases are not enough to collect all user keys before the deadline of

this thesis, so a subset of the keys were be analyzed in the meantime. At the time of

writing, 17% of users have been scanned for GPG and SSH commit signing keys and

21% have been scanned for authentication keys.

3.2 Analysis

The primary purpose our analysis was to gain an understanding of users with GitHub

Keys. We gathered a large sample of user keys from GitHub, both authentication

and signing. The keys themselves were analyzed to answer basic questions about

the state of security on the platform. Walks through the database were made to get

counts of every type of key. For each of the three categories (authentication, SSH

signing, and GPG signing) we walked the database and count the number of each key,

the number of each key algorithm, the length of each key relative to the algorithm,

and in the case of the signing keys, the date of creation for the key. We performed

additional scans over the database to find the total number of users who have signing

keys to account for the overlap in GPG and SSH signing ownership. This provides

information required to estimate the security of keys and the percentages of algorithm

use in the database per key category.

Key strength was found using the keys algorithm and length. It was calculated

as needed and then formatted into counts of keys by algorithm and category. Once
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we had these strength measurements we were able to investigate the overall average

strength of each key category and find the percentage of weak keys in each key type,

A percentage is important here as the amount of collected keys per each type varies

drastically. Comparison between the types of keys is also useful. We compared

key ownership of authentication keys to ownership of signing keys. This is done by

performing scans of how many users have both signing and authentication key. This

is useful to draw correlation between key ownership on the platform.

In addition we investigate the discrepancy between the standards for GPG signing

keys and SSH signing keys on GiHub. We compared the security difference in these

keys over time to see the effect of security policy changes applied to SSH signing keys

vs the unchanged GPG keys. Security can be found by using the keys algorithm and

length to normalize its strength to a universal measurement. This time analysis was

done as a separate walk through the database. Key creation timestamps were used

to group the keys chronologically by year. Once the data was in this form we were

able to investigate the security of signing keys over time.

We collected additional data on users, including statistics about their created

issues, repositories, organizations, recent contributions, and general recent activity

on the platform. This information was collected via GraphQl. This system allows for

us to gather a variety of data at one time with custom requests, however if a request

becomes to complex it simply fails. Due to limitations of the GraphQl request system,

we were not able to gather all available user metadata at once, and will need to gather

additional contextual data in the future.

This user information was used to create a general outline of the average Github

user. We first inspected baseline data including all gathered user data in order to

understand the differences between users who have keys and users who do not. This

included the number of active users, the number of repositories a user has, the number

of repositories a user has recently committed to, and the number of organizations a

user is part of. This information was collected via similar walks through each item in

the database. Items in this data base are checked against users in the key database
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in order to separate the user information into categories depending on which keys

they had. We separated them into six categories: all users, users with signing keys,

users with authentication keys, users that do not have signing keys, users that do not

have authentication keys, and users that have no keys. Each of these sets of users

had analysis performed on it. We found the engagement of users in terms of recent

contributions, issues, repositories owned, and organizations. We find the average

number in each category, the standard deviation, and the percent of users in a range

of values. User last active data is presented as percentage of users who were last on

GitHub by year.

This information is then correlated to users with keys to see how they behave in

comparison to the norm. We look for correlations between higher GitHub Activity and

key ownership. We were able to draw significant connections between key ownership

and general involvement on GitHub. We also constructed a secondary user key data

set to investigate the key usage of users who are known to be active on GitHub. We

looked at their user ship by percentage as well as their preferences on key algorithms

and security strength.

Our World of Code analysis currently consists of large scale counts of commit

information across public GitHub repositories. The world of code repository is hosted

on a series of shared storage networks. Access is given out on an application basis and

data analysis occurs over a SSH network tunnel connection. We scanned a portion of

the commits in the world of code repository to get an initial understanding of how

many commits on the platform are signed. Work with the world of code platform is

still ongoing as of the time of this thesis.

3.2.1 Implementation

Statistical analysis was performed using Jupyter Notebook on Python. Jupyter

Notebook is a cell based coding system built on python designed for data analysis and

visualization. Numpy was used to perform more taxing statistical analysis such as
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key strength calculations and standard deviation calculations. The GnuPG package

was used to pull metadata from collected GPG keys.

A few methods were used to speed up data access on sqlite. Users were indexed by

their user ID, which is a unique integer value. This drastically speeds up individual

user lookup which is used commonly for both data collection and analysis. Sqlite does

not allow for concurrent database access. Multiple database files were used to hold

data from different scans which was reconciled later after collection. This allowed us

to utilize a multi threaded approach. Threads could then be split into different jobs

for the different scans performed to reduce the load per thread. To reduce the size

of the main table we attempted a sharding solution, splitting the table into multiple

tables with a maximum row count of 10 million. This sharding approach showed

negligible performance improvement.

Security strength, is defined by NIST as the amount of work, or number of

operations, required to break a cryptographic algorithm or system.[21] It is expressed

as bit strength, a bit strength of 80 would require 280 attempts to break on average.

This value is calculated differently depending on the algorithm used to generate the

key. The following algorithm defined in FIPS 140-2[22] was used to calculate the bit

strength of RSA keys.

x =
1.923× 2

√
L×ln(2)× 3

√
(ln(L×ln(2)))2−4.69

ln(2)

Where L is the length of the RSA key and x is bit strength. DSA keys are

calculated using this formula.

y = min(x,N/2)

Where y is bit strength, x is the result of the equation used to calculate RSA key

strength using the length of the Diffie-Hellman public key as L, and N is the length

of the Diffie-Hellman private key.

The strength of elliptic curve algorithms was determined using table 3.3 provided

in NIST 800-57 [21].
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Table 3.3: Security Strength estimates by algorithm as defined by NIST 800-57

Security
Strength

Symmetric Key
Algorithms FFC∗ IFC† ECC‡

<80 2TDEA L = 1024 N = 160 k = 1024 f = 160-223
112 3TDEA68 L = 2048 N = 224 k = 2048 f = 224-255
128 AES-128 L = 3072 N = 256 k = 3072 f = 256-383
192 AES-192 L = 7680 N = 384 k = 7680 f = 384-511
256 AES-256 L = 15360 N = 512 k = 15360 f = 511+

∗RSA
†DSA, DH, MQV
‡ECDSA, EdDSA, DH, MQV
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All statistical analysis was performed using a Python Notebook managed by a

devcontainer. For actual data aggregation and operations, we kept the data in SQlite

and operated on the data line by line through sqlite commands via pythons SQlite3

module. Due to the size of these databases being in the millions, common solutions

like pandas were not viable for performing operation on the full data set. Lazy loading

solutions like line by line file reading and SQlite scans were used instead.

As information was read from the database, Python dictionaries were used to store

relevant information like the number of occurrence of each type of key, the length of

these keys, the counts of the number of users in each key category. This allowed for

important information to be condensed into a small data structure that can be held

in memory. This data was saved to a file in JSON format for long term storage to

prevent recalculating results. This information was enough to perform analysis over

usage percentages, standard deviations, and averages.

User data was analyzed in a similar fashion. We walk through the database of

user information and used the saved user ID’s in the table to perform lookups in the

database files containing keys to construct data sets of users who met conditions such

as key ownership and recent activity.

Information taken from World of Code was gathered differently. The World of

Code database is hundreds of Gigabytes and as consequence is access directly via SSH

network connections. Database operations were primarily performed using command

line tools to iterate over a series of mappings between the various types of data on

the platform. The command script we used to collect the number of signed commits

on the platform was:

for i in 0..127; do perl /lookup/lstCmt.perl 3 $i; done | grep -c

"gpgsig"

This made an overarching scan of the stored commits and searched them for a

string unique to singed commits. Our initial scan was reduced in size from 0..127 to

0..10. This was to allow for a series of scans that would not monopolize the server
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resources for too long and would allow for data to be collected in parts for faster

initial analysis.
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Chapter 4

Results

Here we discuss the results of our analysis. These results are able to answer the

research questions established at the beginning of this paper. Namely, what is the

quality of authentication keys, what is the usage rate of signing keys, and how many

commits are signed?

4.1 User Analysis

We performed our investigation on 13 million GitHub users. The most notable fact

to take from this data is the vast majority of GitHub users are not active and have

never contributed to a repository. Over 50% of users have not been active on Github

in the past four years, and 94% of users have not made a recent contribution to any

repository and 44% of users do not own a repository and 80% of users have never

made an issue. We define recent as within the past year. This level of inactivity

from the average GitHub user is significant. This tells us only a small portion of

users on GitHub are active developers who are pushing code to repositories. The

primary focus of key security is to ensure the integrity of code on GitHub. These

users are responsible for the majority of the code on the platform. Their accounts

have wide access to large amounts of code on the platform, making their account

security significantly more important than those who do not contribute code. This
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also opens some concern for the misuse and targeting of old accounts that are no

longer active but used to be.

Most user accounts have not been active in recent years. We have found that 74%

of all users have not had any activity on their GitHub account since 2023. In the

case of users with any type of key, more than 90% of accounts have been active since

2023. Figures 4.1-4.3 Graph the percentage of users who were last active in a given

year for all users, users with authentication keys, and users with signing keys.

We find significantly different engagement rates between users who have crypto-

graphic keys and users who do not. Out of all 13 million scanned user 6% have made

any contributions in the past year, 2% are part of at least one organization, 20% have

made an issue and 44% own at least one repository.

Users with authentications keys much more active. 51% have made contributions,

46% are in an organization, 79% have made an issue, and 96% have a repository.

Users with commit signing keys are significantly more active than users with

authentication keys. 64% have made recent contributions, 46% are in organizations,

92% have made an issue, and 99% own a repository. Figures 4.4-4.7 compare these

values, and tables 4.1-4.6 show average rates for each of these categories for a variety

of user types. We gather from these that users without keys are the least engaged on

the GitHub platform.

This shows that accounts with keys attached to them are among the most active

accounts on the platform. We also see this behavior when considering the last active

date of users on the platform.

We performed a one sided test of percentages to find significance values for each

category of activity comparing users with login keys, users with signing keys, and

general users to ensure the disparity in activity is statistically significant. We found

that for every category the confidence value p was lower than 0.0001. This allows us to

say the disparity in activity between the types of users compared above is significant

with 99.9% confidence.
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Figure 4.1: Percentages of when users last appeared on GitHub.
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Figure 4.2: Percentages of when users with login keys last appeared on GitHub.
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Figure 4.3: Percentages of when users with signing keys last appeared on GitHub.
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Figure 4.4: Percentage of Users who have a number of Repositories under associated
with their account.
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Figure 4.5: Percentage of Users who made a recent contribution to a number of
repositories.
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Figure 4.6: Percentage of Users who have made some number of Issues.
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Figure 4.7: Percentage of Users who belong to a number of Organizations.
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Table 4.1: Engagement Values for All Users

Category Mean Standard Deviation

Contributions 0.2114 4.0913
Repositories 5.5832 37.7044
Organizations 0.0257 0.2803
Issues 3.0279 85.9706

Table 4.2: Engagement Values for Users With Login Keys

Category Mean Standard Deviation

Contributions 1.6956 10.0911
Repositories 24.4814 61.1777
Organizations 0.198 0.8065
Issues 20.5299 162.8192

Table 4.3: Engagement Values for Users With Signing Keys

Category Mean Standard Deviation

Contributions 3.6889 15.6651
Repositories 35.2887 102.6553
Organizations 0.4986 1.3781
Issues 45.5339 180.8436

Table 4.4: Engagement Values for Users Without Login Keys

Category Mean Standard Deviation

Contributions 0.0814 3.0126
Repositories 3.9278 34.4134
Organizations 0.0106 0.1602
Issues 1.4948 75.4122

Table 4.5: Engagement Values for Users Without Signing Keys

Category Mean Standard Deviation

Contributions 0.1741 3.7619
Repositories 5.2641 36.2507
Organizations 0.0206 0.2379
Issues 2.5713 84.258
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Table 4.6: Engagement Values for Users Without Keys

Category Mean Standard Deviation

Contributions 0.0766 2.9935
Repositories 3.8637 33.4781
Organizations 0.0098 0.1512
Issues 1.4179 75.099
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4.2 Key Analysis

On initial investigation, a small percentage of users have authentication or commit

signing keys - 7.2% and 1.2% respectively. We investigate the usage and security of

both types of key separately below.

4.2.1 Authentication Keys

Out of 20 Million Users, 1.3 Million have SSH Login keys, or about 7.2%. This result is

more interesting as Github has recently removed the option of password authenticated

code deployment and now requires keys for commits. Some explanations for this

number could be the recent phase out and removal of weaker key ciphers such as

DSA. It could also speak to the number of active developers on Github. We know

that the majority of accounts are not active and have not contributed code to any

repository. If users are not pushing code to repositories they would have no reason to

create authentication keys. There is also some concern with the reliability of GitHub

request data, as the implementations for Rest API and GraphQl api differ.

59.61% of SSH authentication keys are RSA, 39.08% are Ed25519 while the

other 1.31% are ECDSA. The prominence of RSA is likely due to the long standing

popularity of RSA as an algorithm. The rise of Ed25519 usage is encouraging. It

is currently the most secure and efficient asymmetric key algorithm. ecdsa was the

most common elliptic curve solution before Ed25519 and seems to have been mostly

replaced by the newer solution. Table 4.7 contains these results.

Users frequently have more than one key associated with their account. Users with

login keys have 1.8 login keys on average. While users could transfer their login key

between devices, many opt to generate new keys for new devices as they are needed.

The majority of authentication keys meet the recommended 112bit security

strength. All keys using elliptic curve algorithms are at least 128bit. However there

are a number of weak keys that appear in our dataset. Approximately 0.4% of login

keys are below the recommended strength threshold. These are entirely made
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Table 4.7: Counts of SSH Authentication keys, and number of occurrences of each
supported Cipher Suite

Cipher Occurrence Percentage

ssh-rsa 1480021 59.61
ssh-ed25519 970451 39.09
ecdsa-sha2-nistp256 18009 0.73
ecdsa-sha2-nistp521 9924 0.4
sk-ssh-ed25519@openssh.com 2647 0.11
sk-ecdsa-sha2-nistp256@openssh.com 950 0.04
ecdsa-sha2-nistp384 637 0.03
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up of RSA keys with below recommended key lengths. Table 4.8 shows actual

counts, security strengths, and algorithms for weak authentication keys. We see the

majority of these weak keys are SSH RSA keys with a key length of 1024 which is now

considered outdated. Figure 4.8 graphs these key ciphers by strengths and popularity.

4.2.2 Signing Keys

Out of 14 million users, 20,000 have SSH signing keys and 150,000 have GPG signing

keys. Accounting for overlap, 1.2% of users have any form of commit signing key.

This makes GPG the most popular commit signing system by far. These users who

do have signing keys are more active than users with authentication keys. This shows

users with more contributions are more likely to use signing keys. We find that 60%

of users with signing keys have made recent contributions compared to 6% of average

users.

SSH commit signing keys favor Ed25519 over RSA. 67% keys are Ed25519, 28% are

RSA, and 5% are ecdsa. There are several possible explanations for this discrepancy.

As of 2021 Github added support for newer elliptic curve algorithms such as Ed25519

and phased out support for algorithms they consider weak such as DSA. We have

not found any SSH keys in the database created before 2022. As a result we theorize

many of these Ed25519 keys might have been made as replacements for older, no

longer supported key types. Users with GPG keys have 1.19 keys on average and

users with SSH keys have 1.16

However this restriction is only placed on SSH keys. DSA algorithms still appear

as the third most popular GPG key. 84% of keys are RSA, 13% are Ed25519 0.8% are

DSA, and 0.3% are ECDSA. It is unclear why Github has different standards for SSH

keys and GPG keys. This could be a sign that they are less concerned with commit

keys as a whole, as GPG keys can only be used for commit signing. The continued

allowance of these keys creates a mixed standard for key maintenance on GitHub and

does result in weaker keys overall.
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Table 4.8: Counts of Weak Authentication keys

Cipher Key Length Occurence Bit Strength

ssh-rsa 1024 5513 80
ssh-rsa 2018 36 109
ssh-rsa 1023 25 80
ssh-rsa 2024 14 110
ssh-rsa 2028 13 110
ssh-rsa 2000 7 109
ssh-rsa 2038 5 110
ssh-rsa 2040 4 110
ssh-rsa 1028 4 80
ssh-rsa 1536 3 97
ssh-rsa 1039 2 81
ssh-rsa 1096 2 83
ssh-rsa 2014 2 109
ssh-rsa 1025 1 80
ssh-rsa 1026 1 80
ssh-rsa 1036 1 80
ssh-rsa 1040 1 81
ssh-rsa 1078 1 82
ssh-rsa 1115 1 83
ssh-rsa 1177 1 85
ssh-rsa 1200 1 86
ssh-rsa 1248 1 88
ssh-rsa 1892 1 106
ssh-rsa 1912 1 107
ssh-rsa 1990 1 109
ssh-rsa 1991 1 109
ssh-rsa 2041 1 110
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Figure 4.8: Bit strength of SSH authentication signing keys. Each circle represents
a different algorithm in a class of cipher suite. The size of each circle represents how
many of these keys are found. The center of each circle represent the bit strength of
the key algorithm.
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No weak SSH keys were found. This can likely be attributed to two factors, SSH

signing keys are significantly less popular than GPG signing keys, as a consequence

our SSH key sample size is significantly lower. SSH keys have also had security

restrictions put on them while GPG keys have not. There are significant occurrences

of GPG keys using DSA encryption algorithms. According to Microsoft, DSA is

a weak algorithm[20], and is no longer supported for SSH authentication keys on

Github. Around 0.6% of GPG keys are weak. The majority of these weak keys are

DSA keys and RSA keys with low lengths. Tables 4.9-4.10 show the actual number of

occurrences for each cipher suite. Figures 4.9-4.11 graph these key ciphers by strength

and popularity. We were not able to find any correlation between key creation time

and security strength in the case of GPG or SSH keys.

This does provide some support for the removal of DSA algorithms from the

supported cipher suites for SSH keys on GitHub as they make up 69% of weak GPG

keys. A full table of these keys and their ciphers is found in table 4.11.

4.3 Active Users

We investigated the subset of users who contributed to at least one project in the last

year. We found that these users are more likely to have keys in general with a usage

rate of 50% for login keys, and 13% for commit signing keys. This is up from the

1.2% usage of commit signing keys across all users and 7% usage of authentication

keys. This shows a correlation between developer activity and key usage, as well as

a significant amount of commit signing on the platform from users who contribute

code. The behavior of users who are active on the platform and develop code is very

different than that of users who do not.

The security of these keys is largely the same. These user have nearly identical

usage rates of cipher suites and the appearance of weak keys is proportionally similar.

Tables 4.12-4.14 show key usage rates of active users.
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Table 4.9: Counts of GPG Commit Signing keys, and number of occurrences of each
supported Cipher Suite

Cipher Occurrence Percentage

RSA (Encrypt or Sign) 175706 84.9
Ed25519 27171 13.13
RSA Sign-Only 1706 0.82
DSA 1654 0.8
ECDSA public key algorithm 712 0.34

Table 4.10: Counts of SSH Commit Signing keys, and number of occurrences of
each supported Cipher Suite

Cipher Occurrence Percentage

ssh-ed25519 16427 67.13
ssh-rsa 6855 28.01
sk-ssh-ed25519@openssh.com 515 2.1
ecdsa-sha2-nistp256 442 1.81
sk-ecdsa-sha2-nistp256@openssh.com 134 0.55
ecdsa-sha2-nistp521 73 0.3
ecdsa-sha2-nistp384 24 0.1
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Figure 4.9: Bit strength of all commit signing keys. Each circle represents a different
algorithm in a class of cipher suite. The size of each circle represents how many of
these keys are found. The center of each circle represent the bit strength of the key
algorithm.
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Figure 4.10: Bit strength of GPG commit signing keys. Each circle represents a
different algorithm in a class of cipher suite. The size of each circle represents how
many of these keys are found. The center of each circle represent the bit strength of
the key algorithm.
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Figure 4.11: Bit strength of SSH commit signing keys. Each circle represents a
different algorithm in a class of cipher suite. The size of each circle represents how
many of these keys are found. The center of each circle represent the bit strength of
the key algorithm.
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Table 4.11: Counts of Weak GPG keys

Cipher Key Length Occurence Bit Strength

DSA 1024 664 80
DSA 768 3 70
RSA (Encrypt or Sign) 1024 279 80
RSA (Encrypt or Sign) 2016 8 109
RSA (Encrypt or Sign) 1056 6 81
RSA (Encrypt or Sign) 1120 3 83
RSA (Encrypt or Sign) 1088 2 82
RSA (Encrypt or Sign) 1344 1 91
RSA (Encrypt or Sign) 1824 1 104
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Table 4.12: Counts of Authentication Keys belonging to active users (Past Year)

Cipher Occurrence Percentage

ssh-rsa 469803 58.27
ssh-ed25519 322852 40.04
ecdsa-sha2-nistp256 7512 0.93
ecdsa-sha2-nistp521 3654 0.45
sk-ssh-ed25519@openssh.com 1548 0.19
sk-ecdsa-sha2-nistp256@openssh.com 564 0.07
ecdsa-sha2-nistp384 304 0.04

Table 4.13: Counts of GPG Commit Signing Keys belonging to active users (Past
Year)

Cipher Occurrence Percentage

RSA (Encrypt or Sign) 83939 83.48
Ed25519 14625 14.54
DSA 887 0.88
RSA Sign-Only 718 0.71
ECDSA public key algorithm 382 0.38

Table 4.14: Counts of SSH Commit Signing Keys belonging to active users (Past
Year)

Cipher Occurrence Percentage

ssh-ed25519 8774 68.91
ssh-rsa 3205 25.17
sk-ssh-ed25519@openssh.com 338 2.65
ecdsa-sha2-nistp256 281 2.21
sk-ecdsa-sha2-nistp256@openssh.com 87 0.68
ecdsa-sha2-nistp521 28 0.22
ecdsa-sha2-nistp384 19 0.15
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4.4 World of Code

The World of Code project is a collection of data from various git platforms. The

project contains information from over 200 million public GitHub repositories. We

leveraged this data to answer questions about general commit signing on GitHub.

Users with signing keys do not have to use them. The presence of keys is not

necessarily indicative of actual commit signing.

For an overall analysis of how prevalent commit signing is on GitHub we performed

a scan of 366,877,605 commits stored in the World of Code database and found that

57,967,631 of these commits are signed. This shows a commit signing rate of around

16%. This far outweighs the 1.2% of users who own signing keys. This is in line with

the 13% of active developers who have commit signing keys. Considering the low

contribution rate of the average GitHub user, and the fact that users with signing

keys contribute more on average than any other users, their over representation in

terms of actual committed data is reasonable.

It should also be noted that commits can be signed by GitHub themselves when

made from the browser. There are two systems for signing commits from the browser,

either via the quick edit function or using GitHub’s browser based IDE. This could

account for some portion of the signing commits found in World of Code.
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Chapter 5

Discussion

5.1 Implications

We now have enough information to answer our original three research questions and

their impact on GitHub security. Using this information we can make claims about

the security of the platform and suggest possible changes to better the safety of Git

systems like GitHub.

Research Question 1. What is the quality of Authentication keys on GitHub? The

majority of user login keys are secure, with around 0.4% of users having weak

keys. GitHub accounts are mostly inactive, over 90% of users do not contribute

code, and over 60% of accounts have not been used in the past four years. This

wealth of inactive accounts could pose an issue. Users with keys are significantly

more likely to be active on GitHub, with higher rates of participation in all

categories. This makes the integrity of these users keys critical as they are the

ones pushing code to the platform. While the percentage of weak keys are low,

they can be sought out by users using available GitHub resources.

Research Question 2. How many users have signing keys and how are they using

them? Around 1.2% of users have any form of signing key. GPG keys are seven

times more popular than SSH keys. GPG keys are also the weakest class of keys
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overall, and this can be largely attributed to the fact that the security standard

for GPG keys has not been updated while the security standard for SSH keys

has.

Research Question 3. How many commits are signed? Around 16% of commits

are signed. While few overall users have commit signing keys, the users who do

commit substantially more. This is attributable to a few factors, most accounts

do not commit code. The majority of code committed to GitHub comes from

around 10-20% of its user base. Those users with keys are much more likely to

be committing code, otherwise they would have no use for keys. This makes

these users far more representative.

5.1.1 Idea: User Tags

GitHub is a broad platform that has come to serve a variety of purposes. While its

primary goal is to enable collaborative code development, it has adopted many other

use cases during its lifetime. GitHub is a large scale discussion forum with millions

of users making issues and conversing about code in repositories. It is a distribution

platform that hosts ready to use executables, websites, and public code repositories

that can be pulled and built. This creates a situation where many users have accounts

on GitHub for purposes other than code development. The lack of engagement and

quantity of inactive users on GitHub is some cause for concern. Trusted developers

who make real contributions to projects are the most critical people on GitHub.

We worry about the security of developer accounts as they are directly responsible

for producing software that is used by others. If these accounts are stolen or

successfully impersonated they could be used to distribute malicious code on a large

scale. User accounts that produce little to no code do not have nearly as much reach

and are less important to secure. Being able to tell the difference between these

types of users could be beneficial to the platform. This allows for trusted users to be

identified quickly and could be used for prevention or warning when non-users make
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contributions. This trusted identification could be established through a variety of

user data such as commit history, account age, or metrics gained from the community

such as user stars.

5.1.2 Idea: Automatic Verification

One large problem with this user trust solution is it requires that commit metadata

to be trusted. This is not possible in GitHub’s current state as commit verification

is still low. While around 16% of real commits are signed, this is not enough to

construct a trusted framework. Any system that indicates account activity can be

easily faked by creating a large amount of doctored commits.

There is an avenue for large scale commit signing. One of the concerns with digital

signing is forcing users to maintain secret keys. GitHub already requires the use of

SSH authentication keys, and allows the use of these keys for the purpose of commit

signing. Developers on GitHub are already maintaining secret keys capable of commit

signing. GitHub could use these SSH authentication keys to automatically sign any

commits coming from that user. A system like this would require no additional user

effort to implement and would use keys and systems already present on GitHub.

Success could be measured quickly by looking at snapshots of commits signing rates

compared to authentication key ownership over time. Higher signing rates when the

proportion of key ownership stays the same would indicate meaningful progress.

There are other potential methods for user verification. Requiring the use of

verified emails for commit identification would help to ensure the reliability of commit

data. GitHub does already require the use of real emails when signing up for an

account and scans to ensure accounts are legitimate. However, since this information

is stored locally on user machines and is pushed to GitHub via Git commands, it would

require additional analysis of commits. Commits would have to have an additional

verification when being pushed to remote repositories or would have to be scanned

after the fact. Either solution would impact the usability of the platform.
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5.1.3 Idea: Security Consistency

While commit signing keys are not commonplace, the users who do have them are

significantly more active. The integrity of these users is important as they have a

proportionally large impact on the platform. Github does not vet the security of

signing keys as frequently as authentication keys. This has led to commit signing

keys being weaker overall when compared to authentication keys. SSH signing keys

are significantly more secure than GPG signing keys. We have found that users are

still creating weak keys in 2024. While these weak algorithms may be secure enough

for the average user at the moment, many of them could become vulnerable in the

near future as resources and attack methods improve. In order to increase security on

GitHub their standards should be consistent across all types of key. GPG key ciphers

should be curated as frequently as SSH key ciphers. GPG keys are the most weak

on the platform and show no indication of improving without additional input from

GitHub.

5.2 Future Work

There is still significant work to be done in this field. User key management is a

valuable topic of study. Git platforms such as GitHub are responsible for some of the

largest networks of personally managed keys. Additional data can be collected from

GitHub as well as from other sources. We also can take a more granular approach

now that we have an understanding of normal user interaction vs the most extreme

user interaction. This allows us to conduct personal interviews with users of interest

to garner an understanding of their usage patterns.

5.2.1 Big Data

Finishing key and user information collection is the next immediate goal for this

research. The limitations of collection from the GitHub API make data aggregation
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slow. Request limits heavily bottleneck data collection speed. While the GraphQl

system allows us to gather some information more effectively, it has its own limitations

and does not allow the collection of all required data. Increasing the bandwidth of

our collection would only be beneficial to the project. This can be done by finding

ways to increase GitHub API access, either through direct appeal to GitHub itself,

or increasing the number of user accounts available to the collection script. Once

full data collection is complete, we can draw definite conclusions about the state of

security on GitHub. The collection of additional user information will also allow us

to perform more contextual analysis of keys.

Alternatively, we can look towards other means of data collection. Gathering large

amounts of user commits and repositories via the GitHub API is not possible in a

reasonable time frame. Further integration with the World of Code project to allow

for analysis of the code contained in signed commits. World of Code contains a near

complete snapshot of public GitHub repositories. It can be used in conjunction with

our collected data to perform a finer grain analysis of signed commits, repositories,

and authors. World of Code will also allow us to see what keys exist in actual commits

and find any instances of keys that are not accounted for by GitHub. The data on

World of Code is hosted on a membership based server. This allows for much faster

data analysis.

We are currently working with the World of Code platform and will continue

to gather information from it in the coming months. Deeper investigations of the

platform can also be performed after full scale data collection is completed. This

includes analysis of actual commit content, repository information such as number of

developers, and percentages on which developers are producing the most code. This

information would allow us to investigate the scale of code contribution of developers

who sign commits and those who do not.
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5.2.2 Interviews

The average person does not like to maintain cryptographic systems. We now have

a large list of developers who do maintain extra security keys. Many of these users

provide additional contact information on GitHub. Performing a study of these users

would help to provide actual user opinion on these key systems. There are a variety

of methods we could use to question these developers. User emails can be attained

through two methods - the emails they provide on their account summary, or the

email they use to sign commits. This is not a comprehensive approach as account

emails are optional, and commit emails are not verified and may not be tied to an

actual inbox the user can receive. Users can also link social media accounts that can

be used to make contact. Large studies could also be made using interview platforms

such as Qualtrics. Any of these solutions will have disadvantages, so a mixture of

methods might be more comprehensive.

Large scale email campaigns for every user who provides one or has an email

linked to a real commit would be one option for contact. This is well suited to survey

style interview where the targeted users simply have to fill out a short survey asking

questions about their usage habits and opinions on Git platforms. This automatic

method would allow for quick collection of a large amounts of data, but is restricted

in the depth of effective information it can collect. Another concern with this cold

call approach is having the emails be considered spam or malicious and ignored.

To supplement this, developers at the extreme end of key ownership or contri-

bution to the platform could be contacted and interviewed directly by members of

our lab. We would consider user in the top percentage of activity on GitHub for a

variety of metrics such as commit activity or number of keys owned. Then interview

them remotely via some online platform such as Zoom. This approach allows us to

ask more complex questions about their opinions and usage on the platform. This

would reveal reasoning behind user sentiment around these cryptographic systems

and help us to understand what kinds of systems these users would like to engage
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with. Conducting personal interviews allows us to thoroughly examine user sentiment

and acquire results that are otherwise impossible with automated systems. While we

would still be reaching out to these users via their linked email accounts, ideally they

would be more receptive as the emails sent to them would be personalized and sent

by a real person, rather than automated.

5.2.3 Contribution

One final goal of this project will be to make the data we have collected publicly

available for further use by other researches. Sharing collected information allows for

our work to be repeated for academic review, and built upon for further research. One

concern with many of the current works looking at GitHub is that most papers are

building data sets from scratch every time. Allowing our data to be used by others

helps to progress our understanding of the field.
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Chapter 6

Conclusion

Github is the most popular code development system in the world. Millions of

developers add code to this platform everyday. Applications, websites, and other

software are deployed from GitHub all the time. Security and user trust on the

platform is critical. Authentication and commit signing keys are the solution to this

problem. Users who utilize both are able to securely upload data to repositories, and

verify they were the ones who did so. The proper management and usage of these

keys is required to build secure access control on GitHub.

We analyzed a significant portion of the users on GitHub to collect information on

their keys and how they interacted with the platform. We found that the majority of

accounts on GitHub are not active or never contribute code. Only a small percentage

of users create any form of key. The users who do create signing keys contribute more

to GitHub on average.

Keys on GitHub are mostly secure, and majority of users on the platform use well

known secure algorithms. Adoption of stronger and faster algorithms like Ed25519 is

increasing across all categories. However, there are an amount of keys on the platform

with a low security strength. A small percentage of weak keys are on the platform for

both signing and authentication. Github does update the security requirements for

keys and has phased out weaker key algorithms over time. However, these standards
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have not been applied to all classes of key. As a result weak keys are still allowed to

be generated after Github recent security updates.

Analysis of data from World of Code has shown that around 16% of commits are

signed. A majority of the code on GitHub comes from a small percentage of users.

Users with security are much more likely to be contributing to the platform than those

without. As a result we see that their contributions make up a significant portion of

actual code.

Understanding why users choose to sign commits and how they interface with

critical systems like Git is necessary for the construction of usable secure systems.

Analyzing key usage on a large platform like GitHub allows us to form a better image

of how the average developer interfaces with security.
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