
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2024

Enhancing security and usability in password-based web systems Enhancing security and usability in password-based web systems

through standardized authentication interactions through standardized authentication interactions

Anuj Gautam
University of Tennessee, Knoxville, agautam1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Gautam, Anuj, "Enhancing security and usability in password-based web systems through standardized
authentication interactions. " PhD diss., University of Tennessee, 2024.
https://trace.tennessee.edu/utk_graddiss/10118

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F10118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=trace.tennessee.edu%2Futk_graddiss%2F10118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Anuj Gautam entitled "Enhancing security and

usability in password-based web systems through standardized authentication interactions." I

have examined the final electronic copy of this dissertation for form and content and

recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy, with a major in Computer Science.

Scott Ruoti, Major Professor

We have read this dissertation and recommend its acceptance:

Adam Aviv, Kent Seamons, Jinyuan Sun

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Improving Security and Usability in

Password-based Authentication Systems

using Standardized Interactions

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Anuj Gautam

May 2024

© by Anuj Gautam, 2024

All Rights Reserved.

ii

I would like to dedicate this work to my wife and my family, whose unwavering love and

support have been a constant source of encouragement throughout the process.

iii

Acknowledgments

I would like to express my gratitude to my advisor, Dr. Scott Ruoti, for his guidance and

support. This work would not have been possible without him. I would like to express my

gratitude to my dissertation committee members: Dr. Adam Aviv, Dr. Kent Seamons, and

Dr. Jinyuan Sun, for their valuable feedback and guidance. I would also like to acknowledge

the invaluable support of my collaborators, Sean Oesch and Tarun Kumar Yadav, on my

papers. Furthermore, I would like to appreciate my labmates for the enriching experiences

we shared in the lab. I am grateful to my friends in Knoxville for the enjoyable times we had

together. Lastly, I extend my heartfelt thanks to my wife for her unwavering support during

the long hours of my work, and to my family for their constant encouragement.

iv

Abstract

Password-based authentication is the predominant method for securing access on the web,

yet it is fraught with challenges due to the web’s lack of inherent design for authentication.

Password managers have emerged as auxiliary tools to assist users in generating, storing,

and inputting passwords more securely and efficiently. But both the browser and the

server are oblivious of the password manager’s presence, leading to usability and security

issues. However, because the web wasn’t originally built to accommodate password-based

authentication, password managers serve as a temporary fix and encounter several usability

and security problems that limit their widespread use. This dissertation proposes a novel

approach to enhance the usability and security of password-based authentication by integrating

authentication as a core component of the web infrastructure, through the introduction of

standardized interfaces for the interaction among browsers, password managers, and websites.

To achieve this, the dissertation introduces four implementations as an exploration: (1)

the development of a Password Composition Policy (PCP) language designed to standardize

and enhance password generation processes; (2) the creation of a Secure Browser Channel

(SBC) aimed at bolstering security of passwords against prevalent web threats such as

cross-site scripting (XSS) attacks and malicious browser extensions; (3) implementing the

concept of SBC in FIDO2 passwordless authentication to show that the concept is important

to more than just passwords; and (4) the application of SBC in different context than

credential entry – the detection and auditing of browser-based attacks. We implemented and

performed real-world evaluations, demonstrating their practical viability and effectiveness

in improving web authentication. The dissertation concludes with reflections on the lessons

learned from these implementations and outlines future research directions that could further

v

cement authentication as an integral, first-class component of the web, thereby substantially

improving the security and usability landscape of web authentication.

vi

Table of Contents

1 Introduction 1

2 Background and Related Works 5

2.1 Authentication . 5

2.2 Password-based Authentication . 7

2.3 Attacks on Passwords . 7

2.3.1 Retrieval of plain text passwords . 9

2.3.2 Online and offline guessing attacks 10

2.4 Password Managers . 11

2.5 Passwordless Authentication . 11

2.5.1 FIDO2 protocol . 11

2.6 Local malicious agents in the browser . 14

2.6.1 Cross Site Scripting (XSS) . 14

2.6.2 Browser Extensions . 14

2.7 Related Works . 15

2.7.1 PCP Languages . 15

2.7.2 Web PCP Analysis . 16

2.7.3 PCP Usability . 16

2.7.4 Browser-Based Password Exfiltration 17

2.7.5 Password Managers . 19

2.7.6 FIDO2/WebAuthn . 21

2.7.7 Detecting attack on passwords . 23

2.7.8 Provenance based intrusion detection 24

vii

2.7.9 Browser Provenance . 24

3 Improving Usability of Generated Passwords 26

3.1 PCP Dataset . 27

3.1.1 Sources . 28

3.1.2 Analysis . 28

3.1.3 Limitations . 28

3.2 PCP Description Language . 29

3.2.1 PCP Language . 29

3.3 PCP-Compliant Password Generation . 34

3.3.1 Library Implementations . 34

3.3.2 Website Implementation . 34

3.3.3 Password Manager Implementation 35

3.4 Usability Study . 36

3.4.1 Study setup . 36

3.4.2 Study tasks . 37

3.4.3 Demographics . 38

3.4.4 Study Design . 38

3.4.5 Limitations . 38

3.5 Study Results . 39

3.5.1 Success Rates . 39

3.5.2 Completion Times . 39

3.5.3 Perceived Usability . 41

3.5.4 Takeaways . 41

3.6 Website Analysis . 42

3.6.1 PCP Strength . 43

3.6.2 PCP Features . 48

3.6.3 Website Analysis . 52

3.7 Discussion . 53

3.7.1 PCP Recommendations . 53

viii

3.7.2 NIST Guidelines . 54

3.8 Comparison with related works . 54

3.8.1 PCP Languages . 54

3.8.2 Web PCP Analysis . 56

3.8.3 PCP Usability . 57

3.9 Conclusion and Future Work . 57

4 Secure Browser Credential Entry Channel 59

4.1 Background . 61

4.1.1 Password Entry Workflow . 61

4.1.2 Relation to Stock and John’s Work 62

4.1.3 Browser Background . 63

4.2 Threat Model . 67

4.3 Design Space Exploration . 69

4.3.1 Design #1: Zero-Knowledge Proof 71

4.3.2 Design #2: No-Script Form Attribute 71

4.3.3 Design #3–5: Nonce Injection . 72

4.3.4 Discussion . 78

4.4 Implementation . 79

4.4.1 Getting Setup . 81

4.4.2 onBeforeRequest . 81

4.4.3 onRequestCredential . 82

4.5 Evaluations . 83

4.5.1 Security Evaluation . 83

4.5.2 Functional Evaluation . 84

4.5.3 Overhead Evaluation . 85

4.6 Discussion . 87

4.6.1 Deployment and Adoption . 87

4.6.2 Securing Manual Password Entry . 87

4.6.3 Denial of Service for Nonce Injection 88

ix

4.6.4 User Confusion . 88

4.7 Conclusion . 88

5 Securing FIDO2 Credential Entry 90

5.1 Secure Browser Channel - sbc-FIDO2 . 91

5.1.1 Adversary model: A . 91

5.1.2 Design: sbc-FIDO2 . 96

5.1.3 Security and Deployability Analysis 100

5.1.4 Implementation . 101

5.2 Discussion . 103

5.2.1 Effectiveness of Defenses . 103

5.2.2 Deployment . 104

5.3 Conclusion . 104

6 Detecting and Auditing Password Theft 105

6.1 Background . 107

6.1.1 General and targeted XSS attacks . 107

6.1.2 Browser Developer Tools . 107

6.1.3 Credential Swapping Mechanism . 108

6.2 Threat model . 109

6.2.1 Motivating Example . 110

6.3 System Design . 111

6.3.1 Basis of the final system . 111

6.3.2 Actors . 113

6.3.3 Process . 115

6.3.4 Ideal Services . 116

6.3.5 Utilizing a trusted third-party server 127

6.4 Implementation . 131

6.4.1 Generation of nonce . 132

6.4.2 Verification of nonce . 133

6.4.3 Attack auditor . 133

x

6.4.4 Data from multiple users . 138

6.5 Evaluation . 138

6.5.1 Nonce verifier . 139

6.5.2 Attack auditor . 140

6.6 Discussion . 143

6.7 Conclusion . 144

7 Conclusion and Future Works 145

7.1 Lessons Learned . 147

7.1.1 Password managers as an opportunity 147

7.1.2 No standard PCP . 147

7.1.3 Humans generate passwords differently than machines 148

7.1.4 Misdirected security concerns . 148

7.1.5 Need to secure against local attacks 149

7.1.6 Need for provenance system in the browser 149

7.2 Future Works . 149

7.2.1 Further improving password generation 149

7.2.2 Securing manual entry of passwords 150

7.2.3 Enhanced Application Support for Secure Browser Channels 151

7.2.4 Usability study of security indicators 152

7.2.5 Stronger threats for credentials . 152

7.2.6 Trusted extensions in the browser . 153

7.2.7 Stronger audit mechanisms . 153

Bibliography 155

Appendices 175

A Study Instrument For Password Policy Authoring 175

B PCP Strength Calculations . 179

B.1 Algorithm . 179

B.2 Estimating Human-Generation . 182

xi

B.3 Limitations . 182

C Webpages Accessible with HTTP . 183

D PCP Strength By Category . 185

E PCP Features by Category . 186

Vita 187

xii

List of Tables

3.1 Quantitative results by policy . 40

3.2 Number of PCPs in each category . 44

3.3 Comparison between PCP languages . 55

4.1 An evaluation of the five designs based on security and deployment. Also

includes an evaluation of 2FA as a comparison point. 70

5.1 Browser Extensions by Number of Users . 95

xiii

List of Figures

2.1 Password-based authentication process . 8

2.2 FIDO2 registration protocol . 13

3.1 PCP Strengths . 45

3.2 PCP strength by Alexa global rank . 47

3.3 PCP lengths . 49

3.4 PCP minimum lengths . 51

4.1 Web Request API flow [27] . 64

4.2 Diagram illustrating how an attacker can use an onBeforeRequest callback

to exfiltrate passwords. 75

4.3 This diagram gives the flow for autofilling and replacing nonces as implemented

by Design #5. 80

4.4 Functional Evaluation Architecture . 86

5.1 Chrome browser popup for FIDO2 authentication initiated on localhost. . . . 97

5.2 sbc-FIDO2 . 99

5.3 sbc-FIDO2 sequence diagram . 102

6.1 Overall diagram of the honeypot system . 112

6.2 Mechanism to register and detect nonces . 121

6.3 All nodes and events for attack audit . 125

6.4 Mechanism to verify nonces using a trusted third-party server 130

6.5 Example call stack triggered by browser password manager and listener script 136

6.6 Filter call stack to find candidate agents . 137

xiv

6.7 The logs generated by the browser and the database entry created by the

auditor for multiple call stacks . 142

1 List of websites accessible with HTTP . 184

2 PCP strengths by for different character preference by category 185

3 PCP features by for different character preference by category 186

xv

Chapter 1

Introduction

Authentication is a critical aspect of software security, especially on the web, where users

must prove their identity to access personal accounts. This necessity arises from the web’s

inherently complex and hostile environment, contrasting with local systems where physical

access may imply access to the system. Despite the ubiquity of password-based authentication

as a primary security measure, it is fraught with issues [21], such as vulnerability to theft

and brute-force attacks—problems exacerbated by the common practice of password reuse.

Furthermore, creating and managing strong, unique passwords for each account poses a

significant hassle for users.

Password managers offer a solution to some of these challenges by enabling users to

generate, store, and autofill strong, unique passwords. ’ However, they are not without their

own set of problems. Usability issues can frustrate users, leading to the underutilization of

available features [139, 108, 144, 151, 6, 14], while some security vulnerabilities of passwords

still persist. For example, inserted passwords are susceptible to cross-site scripting (XSS)

and phishing attacks. This situation highlights the need for improvements in authentication

methods to effectively balance the competing priorities of convenience and security.

Password managers currently serve as a stopgap solution to the web’s authentication

challenges. They are implemented in two main forms i) standalone applications, where users

must juggle interactions between the browser and the password manager (such as manually

copying and pasting credentials), or ii) browser extensions, which offer a more integrated

experience by autofilling credentials directly. Despite the convenience of browser extensions,

1

their interactions are limited to the browser’s DOM—home to many security

vulnerabilities—and operate without the browser’s active recognition of their presence.

Moreover, website servers remain indifferent to whether a password manager is being used.

This situation presents an opportunity to enhance both the security and usability of

password management. By encouraging standardized interactions among browsers, servers,

and password managers, there’s a chance to significantly improve the authentication

landscape, making it safer and more user-friendly for everyone involved.

In this dissertation, we explore the enhancement of security and usability in password-

based authentication by providing standardized interactions between the web entities, with

password manager acting as an intermediary. We start by suggesting a standardized way for

websites to tell password managers exactly what kind of passwords they need, using something

we call a Password Composition Policy (PCP) language. This helps password managers

create passwords that fit each website’s rules. Furthermore, we explore vulnerabilities in

the credential entry process, particularly the risks associated with credentials entered into

the browser, such as exposure to cross-site scripting (XSS) attacks and malicious browser

extensions. To counteract these threats, we develop a Secure Browser Channel (SBC) for

the safe entry of credentials. We implement a proof of concept secure browser channel for

passwords as well as passwordless(FIDO2) systems. Finally, we utilize the secure browser

channel to implement a system that detects and audits credential attacks in the browser, thus

enhancing the protective measures against potential security breaches. Through this research,

we aim to substantially improve the security and usability of web authentication, advocating for

a more harmonized interaction among browsers, servers, and password managers, ultimately

benefiting users and web services alike.

Leveraging existing research that highlights user challenges with password managers due

to inconsistent website requirements, in Chapter 3 we introduce a Password Composition

Policy (PCP) language. We developed this language after analyzing password policies from

270 websites. It enables the creation of passwords that meet various website standards and

incorporate user preferences, improving both security and usability. Our proof of concept

demonstrates its practicality through website and password manager implementations, showing

how it simplifies compliant password generation with minimal changes needed by websites

2

and password managers. A study with 25 participants proves the language’s ease of use for

even novice developers. Additionally, our analysis uncovers that many current web PCPs fail

to protect against offline attacks due to user preferences for certain character classes.

In Chapter 4, we transition from addressing usability issues in password generation to

enhancing the security of credential entry into the browser. Recognizing vulnerabilities

identified in past research [160], particularly those exploiting scripts’ access to the browser’s

Document Object Model (DOM), we introduce a secure browser channel(SBC) that allows

to securely insert credentials into the browser. For this, we introduce read-only API that

allows password managers to securely input credentials into the browser. It operates by

initially entering a dummy password into the DOM, which is subsequently replaced with the

actual password through the secure channel, effectively blocking scripts and extensions from

accessing the DOM during this critical exchange. This mechanism, designed to be compatible

with existing password managers with minimal changes and without necessitating website

modifications, significantly bolsters autofill security against threats like XSS attacks and

malicious extensions. Our evaluation shows its effectiveness, enhancing security for 97% of

the Alexa top 1000 websites without affecting their operation, providing a strong defense

against widespread browser-based security risks.

To demonstrate that the concept of secure browser channel extends beyond password-

based systems, in Chapter 5 we explore its application to the passwordless FIDO2 system.

While FIDO2 is robust against remote attacks, it remains susceptible to local threats. In

this chapter, we highlight how browser extensions can potentially intercept and alter FIDO2

communications between the server and the device, compromising the credential registration

process. To counter this, we develop a secure browser channel tailored for FIDO2. Through

this channel, servers can transmit FIDO2 requests in the request header, allowing the browser

to safeguard the request until it’s needed by the WebAuthn API. This method ensures that

FIDO2 requests remain unaltered by malicious browser extensions, thereby securing the

FIDO2 registration process against local attacks.

Finally, we take the secure browser channel’s capabilities even further by exploring how

it can do more than just secure credential entry. In Chapter 6, we introduce a system that

detects credential theft and facilitates audit of the attacks on the browser, significantly

3

bolstering defenses against potential intrusions. This system utilizes the nonces from the

secure browser channel to spot credential theft attempts. Additionally, it makes use of browser

audit logs, allowing for a retrospective analysis of attacks through cooperation between users

and servers. By boosting both the detection and auditing of browser-based attacks, this

approach acts as a strong safeguard against security breaches. This approach has the dual

purpose of detection and deterrence, enhancing the overall security of web authentication

landscape.

In another sense, dissertation begins by addressing the usability of password generation

through standardizing interactions between the password manager and the server in Chapter 3.

We then move on to standardizing the interaction between the password manager and the

browser to improve the security of credential entry in Chapters 4 and 5. Finally, we leverage

the properties of secure browser channel – standardizing the interactions among the password

manager, browser, and server – to introduce the ability to detect and audit attacks on

credentials in the browser. Finally, with the enhanced understanding of the security and

usability of password managers, we close with a discussion of key lessons learned and suggest

directions for future research in Chapter 7.

4

Chapter 2

Background and Related Works1

This section provides the background information necessary to supplement the understanding

of the work presented in this dissertation. We start with general authentication systems

common in the web and the role of password managers in securing user credentials. We then

discuss security issues associated with web authentication systems, such as phishing, cross-site

scripting attacks, and malicious browser extensions. We conclude with a discussion of related

works that have been conducted in improving the security and usability of password-based

authentication systems on the web.

2.1 Authentication

Authentication is the process or method of verifying the identity of a user or system in order

to allow them access to a resource, data or service. This process is important in ensuring

that only authorized individuals or systems can access the restricted system. Authentication

involves i) identification, where the user or system provides a unique identifier, ii) verification,

where the system validates the identity of the user or system, and iii) authorization, where

the system determines the level of access the user or system has. Authentication is a critical

component of security systems, and it is used to protect sensitive information and resources

from unauthorized access.
1This chapter incorporates content from previously published works or preprints related to Chapters 3, 4,

5, and 6. Please refer to these chapters for detailed references.

5

Authentication in computer systems usually utilizes a secret credential or identifier, only

known to the user or system, to verify the identity of the user or system. The complete

authentication process involves the steps of registration, access, and management. During

registration, the user and the system agree on a secret credential, most commonly the user

chooses the credential and registers it with the system. During access, the user proves

with the system that they actually possess the correct pre-registered credential. During

management, the user can manage their credentials, including changing, updating, or deleting

their credentials.

The most common method of authentication is the use of passwords, where the user

provides a secret password to the system to verify their identity. The user registers the

password with the system during the registration process. The user supplies the password

during the access phase, and the system verifies that the password is correct. The user can

manage their password by changing, updating, or deleting it.

A factor for authentication is a category of credentials that can be used to authenticate

the identity of a user. There are three main categories of factors of authentication [128]:

something you know, something you have, and something you are.

• Something you know: This factor of authentication is knowledge-based and involves

information that only the user knows such as a password, PIN, or answers to personal

security questions.

• Something you have: This factor of authentication involves something the user possesses,

such as a physical token (e.g., a security key fob that generates a one-time password)

or a soft token (an app that generates a one-time password).

• Something you are: This factor of authentication involves something the user is, such

as biometric characteristics like fingerprints, facial recognition, iris scans, or voice

recognition.

Local vs Web Authentication Even though local systems use authentication, the security

of local systems also depend on the proximity to the system, i.e. the adversary needs to be

near the system to attempt to authenticate. In comparison, authentication in the web is

6

more challenging because it is done over the network, and the adversary can be anywhere in

the world. So, local system authentication requires strictly more privileged adversaries than

web authentication. Therefore, for the rest of this document, we focus on web authentication

as the issues on the web is a strictly more difficult problem than local system authentication.

2.2 Password-based Authentication

Use of passwords is the most common method of authentication. The figure 2.1 shows the

process of password-based authentication in the web. Typically, the process of password-based

authentication in the web works as follows:

1. The user chooses a password.

2. The user inputs the password in the web browser.

3. The web browser sends the password to the web server.

4. The web server stores the password securely for future use.

After this, the user can utilize their registered password to access the system with the

following steps:

1. The user inputs the password in the web browser.

2. The web browser sends the password to the web server.

3. The web server verifies that the password is correct.

4. The web server grants access to the user.

5. The user can then access the secure resources.

2.3 Attacks on Passwords

Password-based authentication is susceptible to various attacks that can compromise the

security of the system.

7

User Device
Directory
Server

1. User inputs username
and password

2. Browser client sends the
username and
password to server

3. Server uses the password to
authenticate user

4. Server then authorizes access for
the user

Figure 2.1: Password-based authentication process

8

2.3.1 Retrieval of plain text passwords

Some attacks on passwords result in the adversary gaining direct access to the plain text

passwords. In cases of phishing attacks, an adversary tricks the user into revealing or sending

them their plaintext passwords. Shoulder surfing attacks involve an adversary looking over

the user’s shoulder to see the password being typed. In both these cases, the adversary gains

direct access to the plaintext password. These attacks are difficult to prevent as they rely on

the users’ actions and are not dependent on the security of the system.

Another case in which the adversary can directly gain access to plaintext passwords is

when they are inserting the credentials into a compromised system. Many layers of software or

hardware could be compromised for this attack to work. In terms of hardware, the adversary

could compromise the keyboard or the screen to capture the passwords.

In terms of software, the adversary can compromise any layer of software that is involved.

Such as the network for man-in-the-middle attacks on credentials, where they can capture

the plaintext passwords as they are transmitted over the network. The adversary can also

compromise the operating system or the browser to capture the plaintext passwords as they

are entered by the user.

Another case of direct access to plaintext passwords is in the case of cross-site scripting

attacks(XSS). XSS attacks involve the adversary injecting malicious scripts into the web

page that the user is visiting. These scripts can capture the plaintext passwords as they are

entered by the user. These attacks are difficult to prevent as they rely on the security of the

web page that the user is visiting. XSS attacks are very common in the web (is in the top 10

OWASP vulnerabilities) and are difficult to prevent.

In cases of both hardware and software compromise, hardware and software security could

be hardened to prevent the adversary from gaining access to the system. In case of hardware,

some works provide secure hardware components that can be used to enter credentials securely

and provide indications when the system is secure. In case of software, work has been done

to either secure software systems or provide signals to the user so that they can identify if

the system is secure.

9

2.3.2 Online and offline guessing attacks

Online guessing attack is the type of attack where the adversary tries to guess the password

by sending multiple login attempts to the system. There is only limited number of guesses

that the adversary can make as most systems, following secure practices, will throttle the

amount of login requests that can be sent for an account and lock an account if too many

incorrect login attempts are made. Usual method of online guessing attack is to use a list of

common passwords and try them for multiple user accounts. Furthermore, if the adversary

has compromised users’ passwords from another website, they can use the same passwords to

try to login to other websites. As can be seen, these attacks stem from the users’ choice of

weak passwords and password reuse.

Offline guessing attack is the type of attack where the adversary has access to the password

database and can try to guess the passwords offline. In most cases, if the system is following

best practices, the password database is hashed and salted. So, the adversary brute-forces

the hashed passwords to try to guess the plaintext passwords. This attack is more difficult

than online guessing attack as the adversary needs to have access to the password database.

Modern techniques of password cracking such as dictionary attacks, rainbow tables, and

brute force attacks are used to crack the hashed passwords. This attack stems from the use

of weak passwords which are easy to guess.

Due to both these attacks, it is important for users to choose unique and strong passwords

for each of their accounts that is hard to guess. To make sure that the users are choosing

strong passwords, many websites require users to create passwords that are compliant to a

strong password composition policies(PCP) and that are not present in the list of common

passwords(blocklists).

Previous research has shown that users find it difficult to create strong passwords and

remember them. Strong password composition policies are a pain point for users, as

remembering strong passwords is difficult. So, users perform various shortcuts to create

composition policy compliant passwords which are not difficult for the adversary to guess.

10

2.4 Password Managers

To alleviate the burden of password management for users, password managers have been

developed. Password managers are tools that help users generate, store, and autofill passwords.

Password managers help user against various attacks against passwords. They help users

generate strong passwords to prevent offline guessing attacks. They help users store unique

passwords for each account to prevent password reuse, to prevent online guessing attacks.

Password managers help users autofill passwords to prevent phishing attacks, and shoulder

surfing attacks.

Even though password managers provide these benefits, users underutilize the password

managers. Specially in generation. Password managers also have issues during entry that is

from passwords but hasn’t been solved.

2.5 Passwordless Authentication

In order to move away from passwords, researchers have proposed passwordless authentication

systems [80]. Instead of passwords, passwordless authentication systems utilize public-key

cryptography to authenticate users. The system sends the user a challenge that the user

signs with their private key. The system then verifies the signature with the user’s public key.

2.5.1 FIDO2 protocol

The FIDO2 protocol facilitates user authentication to a web service through the use of

public-key cryptography. Users register their public key with a web service and authenticate

themselves by using their private key to sign challenges issued by the service.

Entities The FIDO2 protocol involves three main entities:

• The Relying Party (RP), such as a web application like "facebook.com" that utilizes

FIDO2 for authentication. This application interacts with the authenticator via the

WebAuthn client. The RP adopts FIDO2 as an option for two-factor authentication

(2FA) or for passwordless sign-in.

11

• The Authenticator holds the user’s private key and is tasked with generating a login

credential for the RP upon receiving user input, such as a PIN or a button press.

FIDO2 accommodates various types of client-side authenticators, including external

(roaming) authenticators like hardware security keys (HSK) and integrated platform

authenticators like biometric systems. While this paper specifically discusses HSK , the

concepts are applicable to all types of FIDO2 authenticators.

• The WebAuthn Client, often embedded within a web browser, serves as the intermediary

that facilitates communication between the authenticator and the RP . To safeguard

against phishing, the WebAuthn client conveys the origin (URL) of the relying party

to the authenticator, which then uses the credentials associated with that origin to

generate a response.

The FIDO2 framework is built around the Web Authentication (WebAuthn) browser API

and the Client-to-Authenticator Protocol (CTAP). The CTAP allows secure interactions

between the WebAuthn client and external or roaming authenticators using Bluetooth, USB,

or Near Field Communication (NFC). The WebAuthn API provides an interface for the RP

in the client.

Registration and Authentication Users enroll their HSK for either 2FA or passwordless

authentication. Figure 2.2 illustrates the FIDO2 registration process. Upon the user initiating

registration via the Register button, a registration request is dispatched to the RP . The

registration sequence is as follows: (1) The RP initiates by dispatching a challenge to the

webAuthn client, along with user and RP details. (2) The webAuthn client relays these

details to the HSK , appending the RP ’s origin or URL and the type of request. (3) Upon

receiving user consent, usually via a button press, the HSK generates a new set of asymmetric

keys. (4) The HSK then transmits the credential id, the public key, a SHA-256 hash of the

RP ’s domain (known as the RP ID hash), a counter to track authentication attempts, and

an attestation signature—a signed object detailing the public key credentials along with the

HSK ’s make and model—back to the webAuthn client as part of the attestation object. (5)

The webAuthn client forwards this information to the RP , which then verifies the signatures

12

Figure 2.2: FIDO2 registration protocol

13

and essential components of the response. If verification is successful, the HSK is registered

to the user’s account.

The authentication process mirrors registration but with two key distinctions: (1) it

omits the requirement for user data, and (2) rather than generating an attestation, the HSK

performs an assertion by signing the response using the private key associated with that

particular credential id.

2.6 Local malicious agents in the browser

2.6.1 Cross Site Scripting (XSS)

Cross-Site Scripting (XSS) [132] attacks are a prevalent security vulnerability in web

applications, where attackers inject malicious scripts into content that appears on a user’s

browser. This type of attack exploits the trust that a user has for a particular site, allowing

the attacker to execute scripts in the user’s browser in the context of the trusted website.

The consequences can range from stealing cookies and session tokens, to defacing websites,

and even launching phishing campaigns. XSS attacks are categorized into three types:

stored, reflected, and DOM-based, each differing by the method in which the malicious script

is delivered to the user. Addressing XSS vulnerabilities is crucial for web security, requiring

both developers and security professionals to implement measures such as input validation,

encoding output, and using security headers to mitigate the risks associated with these

attacks.

2.6.2 Browser Extensions

Browser extensions or add-ons are small software programs that extend the functionality of a

web browser [117]. They are designed to enhance the user experience by adding new features

or modifying existing ones. Browser extensions can be given access to a wide range of browser

features, such as tabs, bookmarks, and browsing history, allowing them to customize the

browser’s behavior and appearance. Important extensions such as ad blockers and password

14

managers need these permissions to function properly, and provide users with valuable features

and services.

However, browser extensions can also pose security risks, as they have access to sensitive

information such as browsing history, cookies, and passwords. Malicious browser extensions

can exploit this access to steal user data, inject ads, or redirect users to phishing sites. During

installation, users are often required to grant permissions to the extension, but research has

shown that users might not fully understand the implications of these permissions, leading to

potential security risks [86].

2.7 Related Works

In this section, we discuss various works related to ours and how our work fits into the larger

context of prior work.

2.7.1 PCP Languages

There have been previous proposals for building PCP languages, with each providing a

different subset of the features used in our PCP language. Two proposals involve adding

additional HTML attributes to input fields to specify PCP requirements [19, 109], though

they only cover a small subset of the most common PCP features.

Horsch et al. [74] developed an XML-based PCP language by automatically scanning and

extracting PCPs for 72,125 services. Based on a sample of 200 manually verified PCPs, they

estimated that their algorithm correctly extracted PCPs in just over four out of five cases,

with the remaining cases evenly split between mostly correct and incorrect. Their resulting

PCP language has most of the features found in our language. However, it is missing support

for multiple rules, requiring a subset of character classes, limiting maximum consecutive

characters from the same character class, and set required and prohibited locations based

on distance from the end of the password. This demonstrates the limitation of this type

of automated PCP extraction—i.e., it can only find PCP features that the automated tool

expects to find. We extend the works of previous PCP langauges by providing a more

comprehensive set of features that can be used to specify PCP requirements. Due to usability

15

issues with encoding PCPs with existing languages, we provide a more user friendly syntax,

along with a user study to evaluate its usability.

2.7.2 Web PCP Analysis

In 2010, Florêncio and Herley [56] retrieved PCPs for 75 websites in the US. They found

that contrary to their intuition, the importance of a website had little correlation to the

PCP used on that website. In many cases, the largest, most important websites had the

weakest PCPs. They suggested that the reason for this was that due to market economics,

these larger websites needed to be more concerned with usability than security, being able to

absorb the security cost of weak PCPs more readily than smaller sites.

In 2016, Mayer et al. [107] replicated and extended the work of Florêncio and Herley. In

addition to re-examining 70 of the websites used in the original study (five did not work),

they also analyzed 67 German websites. They find that overall, PCP strength has been

increasing, though German PCPs, on average, are weaker than US PCPs. In our work, we

replicate and extend these works by including a larger dataset of 270 websites which is more

geographically diverse. Compared to this prior work, we gather more features of the PCPs

used on these websites and develop a more fine-grained estimation of PCP strength.

2.7.3 PCP Usability

Several studies have examined the effect of password policies on user behavior. These studies

have shown that while strong PCPs make passwords harder to crack, they also make passwords

harder for users to remember [143]. Furthermore, as the number of passwords a user needs

increases, their ability to remember them decreases [163, 2]. This helps explain why when

Florêncio and Herley [55] studied password behavior of half a million users, they found

that users had on average 25 passwords and reused any given password on an average of 6.5

different websites.

Other research explores what PCP features make passwords harder to remember, with

most research finding that it is complex character class requirements that cause the most

difficulty [90, 155, 156]. In contrast, minimum length is not nearly as significant of an

16

impediment, leading researchers to suggest favoring longer but less complicated passwords.

More recently, we have seen these suggestions reflected in NIST guidelines [62]. Our research

finds that length has the greatest impact on PCP strength for both passwords generated at

random and using an alphabetic-first approach. As such, we echo prior recommendations for

PCPs to focus on length as opposed to complexity.

2.7.4 Browser-Based Password Exfiltration

Examining the literature, we identify three avenues by which passwords can be exfiltrated

from the browser. This does not include threats outside of the browser such as phishing [3],

man-in-the-middle network attacks [130], or compromised execution environments [53, 16].

While each threat has extensive related work, a high-level understanding of them (as held

by most readers) is sufficient to understand the remainder of this paper. As such, we omit

discussing them in this section for brevity.

Web Trackers

Web trackers are scripts used to track users across different websites, primarily to more

effectively serving advertisements. Trackers collect various information and interactions of the

user without the user even knowing about it. Senol et al. [153] analyzed form submissions on

100,000 popular websites, investigating whether web trackers on those pages would exfiltrate

user passwords. They find that at least 2–3% of those pages include web trackers that

exfiltrate passwords. While the motivations for this exfiltration are largely unknown, in

many cases, it likely represents an honest-but-curious attacker model—i.e., web trackers are

simply grabbing whatever information they can and are not targeting passwords specifically.

Regardless, as shown by Dambra et al. [40], users encounter these web trackers frequently,

indicating a need to protect user passwords against these honest-but-curious trackers.

17

Malicious Client-Side Scripts

Malicious scripts running within a web page can steal user passwords by extracting them

from the document object model (DOM) after they have been typed into a form by the user

or autofilled by a password manager. There are several sources of malicious client-side scripts.

The most common source of malicious client-side scripts is cross-site Scripting (XSS)

attacks. In these attacks, an adversary coerces a website to include attacker-controlled scripts

in a web page’s DOM, whether by tricking users into clicking a link with the malicious script

(reflected XSS attack) or uploading the malicious script to the website (stored XSS attack).

While defenses for XSS attacks are well known, the OWASP foundation consistently ranks

them in its top 10 web application security risks [133], and hundreds of XSS attacks have

been reported in January of 2024 alone [39].

Another common source of malicious client-side scripts are websites that use third-party

libraries, with such libraries being ubiquitous [97]. While libraries produced by an adversary

are transparently dangerous, more concerning are supply chain attacks [129, 49]. In these

attacks, an adversary will compromise an otherwise benevolent software library; then, when

websites relying on this library are updated, they will also become compromised. These

attacks are already somewhat common [129, 49], with WhiteSource [170] identifying 1300

malicious JavaScript libraries in 2021.

While supply chain attacks are a problem for client-side and server-side libraries, in this

paper we are primarily concerned with client-side supply chain attacks. Web client-side

supply chain attacks are especially concerning as it is a common practice to load libraries

from external sources.2 If a website adopts this practice, the website will be immediately

compromised as soon as the library is compromised, without needing to wait for the website

to explicitly update to the compromised version of the library.

Malicious Browser Extensions

The final avenue for password theft is malicious browser extensions. Browser extensions have

two avenues for exfiltrating user passwords. First, they can inject client-side scripts into web
2For example, see usage instructions for Bootstrap at https://getbootstrap.com/.

18

https://getbootstrap.com/

pages, stealing passwords in the same way as other malicious client-side scripts. Alternatively,

they can inspect the body of outgoing web requests, stealing passwords found in those bodies.

There are many instances of malicious browser extensions used by millions of users on

official Chrome/Firefox extension stores. In 2020, 500 Chrome browser extensions were

discovered secretly uploading private browsing data to attacker-controlled servers and

redirecting victims to malware-laced websites [131]. Also, Awake has identified 111 malicious

Chrome extensions that take screenshots, read the clipboard, harvest password tokens stored

in cookies or parameters, grab user keystrokes (like passwords), etc. [15]. These extensions

have been downloaded over 32 million times. Finally, in 2021, Cato’s analysis of network

data showed that 87 out of 551 unique Chrome extensions used on customer networks were

malicious [24].

In addition to inherently malicious extensions, extensions can also be compromised through

supply chain attacks.

Relation to Our Work

The above research demonstrates that there is a critical need to protect passwords from

being exfiltrated by honest-but-curious or malicious entities. In this work, we demonstrate

how password managers can be modified to prevent password exfiltration for web trackers,

malicious content scripts, and malicious browser extensions.

2.7.5 Password Managers

Password managers serve to help users (a) create random, unique passwords, (b) store the

user’s passwords, and (c) fill in those passwords. On desktops, password managers are

implemented as browser extensions. The browser does not provide any password management

APIs for these extensions to use [123]. On mobile, there is first-party support for password

managers, though this support has significant security issues [122].

19

Security

Password managers have the potential to provide strong security benefits, but also have

the potential to act as a single point of failure for users’ accounts [160, 102, 157, 123, 122].

In particular, when passwords are autofilled into websites they are vulnerable to theft by

JavaScript and extensions. In the most alarming case, if the password manager fails to require

user interaction before autofilling passwords and allows passwords to be filled into iframes,

it opens users to password harvesting attacks that can surreptitiously steal many if not all

their passwords [160, 123]. This problem can be made even worse when the operating system

enforces incorrect behavior, such as in mobile devices [122]. Similarly, care has to be taken so

that other concurrent programs cannot steal sensitive information when it is being processed

by the manager, such as when a manager copies information to the system clipboard [53, 16]

Usability

Simmons et al. [158] systematized password manager use cases. They found that today’s

managers poorly supported many password manager use cases and that even when supported,

they were often targeted at experts rather than the lay users the tools claimed to support.

Huaman et al. [78] investigated integration problems between desktop password managers

and websites, finding that managers often struggle to support modern web standards and

that websites are highly heterogeneous in their implementations, leading to difficulties. Seiler-

Hwang et al. [152] conducted a laboratory user study of four smartphone password managers,

finding significant usability issues, particularly in the integration of the manager with apps

and browsers, with users rating the managers as having barely acceptable usability.

Lyastani et al. [104] instrumented a password manager to collect telemetry data regarding

password manager usage. Their results show that users underutilized password generation.

This phenomenon was partly explained in research by Oesch et al. [125] that surveyed users

and showed that many users avoid the security-critical functionality of password managers,

such as password generation or password audits because they felt these features were too

difficult to use. Instead, they focused on features with the highest usability, such as autofill.

20

Work by Karole et al. [88] and Ciampa et al. [35] have shown that users prefer different

password manager implementations, with non-technical users preferring phone and browser-

based managers, whereas technical users are more likely to prefer a standalone manager.

Relation to Our Work

Research into the security of password managers over the last decade has consistently shown

that the autofill process is a key component of security issues with password managers [160,

102, 157, 123, 122]. In this paper, we explore how the autofill process can be transformed

from a weakness of password managers to one of their strengths, providing benefits not

available for manual entry. Critically, this security benefit is available without any change to

user behavior, which is not the case for other password manager security benefits [158, 125].

2.7.6 FIDO2/WebAuthn

Previous research has shown that FIDO2 is prone to local attacks. The initial investigations

into the security of the early FIDO protocols—the Unified Authentication Framework (UAF)

and Unified 2nd Factor (U2F)—revealed vulnerabilities. UAF operates as a passwordless

authentication system, and U2F serves as a standardized 2FA system. Hu et al. conducted

the first informal evaluation of UAF, highlighting three potential attacks [77], including a

re-binding attack where an attacker links their authenticator with a RP instead of the user’s

authenticator. Subsequent analysis by Panos et al. [136] identified further attack vectors

that could lead to system compromise, assuming that attackers could gain access to the

authenticator and control the UAF client. Pereira et al. carried out the first formal analysis of

FIDO1 [141], considering threats from network attackers and those capable of compromising

the client or server. They affirmed that the protocol remains secure as long as the RP is

properly authenticated. Their analysis, however, was limited to authentication and did not

cover registration.

Later, UAF and U2F were combined into the W3C standardized protocol, FIDO2,

which supports both passwordless authentication and 2FA. Guirat et al. provided a formal

verification of FIDO2’s security against both passive and active network attacks [65]. Jacomme

21

et al. formally analyzed several multi-factor authentication schemes, including FIDO2 [79],

with a threat model encompassing malware, fingerprint spoofing, and human errors, indicating

that FIDO2 is not definitively secure against malware.

Additional studies [37, 42, 105] have investigated the usability issues and perceived

advantages of FIDO2 device usage. Alqubaisi et al. evaluated the threat of password attacks

in comparison to single-factor FIDO2, noting that single-factor FIDO2 fares better against

the password-based threat model, although it does not address targeted attacks on the FIDO2

protocol itself [9].

Chang et al.[26] highlighted vulnerabilities of U2F to side-channel and Man-In-The-Middle

(MITM) attacks and proposed enhancements to the U2F protocol to mitigate side-channel

threats . O’Flynn extended the threat model by demonstrating an attack on HSK through

Electromagnetic Fault Injection, which led to the compromise of confidential data [127].

Dauterman et al. addressed the risks posed by hardware backdoors in HSK and proposed

True2F [43], an improved version of U2F designed to defend against malicious HSK and

enhance resistance to token fingerprinting. While considering a compromised browser, they

suggested that as long as the True2F token functions correctly, it is no less secure than

traditional U2F. Our work complements these efforts, enhancing the security of HSK beyond

traditional U2F, assuming the presence of an adversary in the browser.

Browser Modification Proposals to Secure Authentication

In the works of Stock and Johns [160], they evaluated the security of password manager autofill

and discovered that passwords being autofilled were prone to being exfiltrated by malicious

scripts. As a solution to this, they proposed a mechanism that involved the generation of

a random placeholder called a "password nonce during autofill operations. The proposed

solution involved four steps: generating a password nonce, automatically filling the nonce into

the web page, monitoring outgoing web requests for the nonce, and substituting the nonce

with the actual password if the request is intended for the correct origin. Our mitigation

approach, called sbc-FIDO2 , employs a similar strategy for replacement.

22

Trusted Execution Environments (TEEs)

Another line of research is the use of TEEs to secure authentication credentials from untrusted

systems and/or browsers [38, 171, 135, 20]. In addition, there are other studies that suggest

the implementation of internal FIDO2 devices or alternative multi-factor authentication

methods [13, 25, 177, 154, 145]. Krypton [1] implements FIDO2 securely by utilizing mobile

TEEs, Apple’s Secure Enclave, and Android Keystore. In the Fidelius system[51], the authors

suggest the integration of SGX enclaves into web browsers as a means to safeguard users’

data from a compromised browser. However, Fidelius needs either two extra hardware

components or keyboards and displays that are modified to include built-in processors capable

of performing encryption and decryption. In chapter 5, even though using TEEs to secure

authentication is a promising body of research, we decided not to pursue it as it requires

additional hardware, making it harder to deploy to most systems, and secures against a

threat model that is difficult to achieve in practice.

2.7.7 Detecting attack on passwords

There have been systems proposed that detect attacks on the passwords, but only when the

whole password database is compromised. Most of them rely on something called honeywords.

Juels and Rivest [84] introduce the conecept of adding dummy passwords in the passwords

file. When the passwords file gets stolen, the server can detect that an attack has occured,

and do the required steps to protect against them. But this depended on a secure storage

on the server, that is unbreachable, to store which ones are honeywords and which ones are

actual passwords. This is an unreasonable assumption as one can store the whole password

file in this secure storage server. Wang and Reiter [166] solve the issue of secure secret state

by monitoring the entry of passwords and probabilistically marking the passwords. Dionysiou

and Athanasopoulos [47] also try to solve this problem by deteministic methods, using a

synchronized random number generator between the server and a separate checking server.

The checking server replays the login events, and checks if the correct sweetword is selected

using the RNG. All of these works have the concept of honeywords, but are primarily based

on when the passwords file is breached.

23

2.7.8 Provenance based intrusion detection

Zipperle et al. [179] perform a survey of providence based intrusion detection system. Common

methods of creating providence in existing systems is by either utilizing audit logs, either

existing or additional, to create a directed acyclic graph.

There has been a lot of work in attack detection in lower-level systems such as the Linux

kernel using complete system provenance data and a posteriori audit [18, 66, 69, 70, 75, 82,

103, 110, 167, 174].

ProvDetector [166] collects kernel-level data provenance by monitoring system call

activities of different processes. It uses neural embedding techniques to learn representations

of the provenance data, enabling the system to effectively identify stealthy malware.

Custos [134] utilizes similar audit methods to uncover tampering of system logs in the kernel.

Mnemosyne [7] attempt to postmortem analyze for watering hole attacks by creating a

causality graph based on browser audit logs and extra information collected using an auditor

daemon. They utilize auditor daemon as opposed to modifications in the browser, which helps

in it’s wider deployment. OutGuard [54] utilizes an instrumented browser to collect detailed

data for different web pages, such as: request and response traces, and javascript execution

traces. It then utilizes machine learning model trained on the data to detect cryptocurrency

mining happening in the wild.

2.7.9 Browser Provenance

Usage of data provenance is common in biological sciences domain where document access

logs are used to link scientific data documents and verifying scientific processes. Zhao et

al [178] use semantics logs and analysis to link documents in biology experiments, so that

researchers can in future examine the connection of different documents. Anand et al [12]

present a provenance browser that allows visualization and navigation of provenance log data.

Margo and Seltzer [106] argue that the browser history metadata can be used as a browser

provenance. They propose different applications of such lineage, such as finding the path of

origin of a downloaded malware. They propose storing browser provenance as graph structure

for efficient storage and lookup to find relationships a posteriori.

24

Yu et al [175] suggest using instrumentation, i.e. modification of existing javascript codes

run in the browser, for security analysis. Jia et al. [83] insert javascript to fingerprint the

different attackers in the browser using user agent, ip, etc. This work involves actual attackers

instead of scripts as in our work.

25

Chapter 3

Improving Usability of Generated

Passwords1

Despite their problems [146, 55, 44, 41, 162, 138, 165], passwords remains the dominant form

of authentication [21]. Password managers strengthen password-based authentication by

helping users generate, store, and enter passwords, making it easier to adopt strong, unique

passwords [138, 104]. Still, research has shown that password manager users underutilize

password generation [140, 104]. One potential explanation for this phenomenon is that

websites’ password composition policies (PCPs) can reject generated passwords, decreasing

the usability and utility of the generator. [78, 126].

To address this issue, we design a PCP language that websites can use to encode and

publish their PCP, with password managers downloading the PCP to ensure that they only

generate compliant passwords. To inform the design of this PCP language, we extract 270

PCPs from a geographically diverse set of 626 popular websites. Using this dataset, we build

an initial PCP language, then iteratively refine it as we encode the gathered PCPs, stopping

once all PCPs in our data set can be efficiently and useably encoded. Our final PCP language

is more feature-rich than previous efforts and is the first PCP language that can represent

the full range of PCPs found in our dataset.
1This chapter is adopted from my publication: Gautam, Anuj and Lalani, Shan and Ruoti, Scott.

"Improving Password Generation Through the Design of a Password Composition Policy Description Language"
Symposium on Usable Privacy and Security. 2020.

26

To demonstrate the feasibility of our proposed language, we (i) build proof-of-concept

websites that publish their PCP using our language; (ii) modify BitWarden, a popular

password manager, to download these PCPs and generate compliant passwords; and (iii)

create Python and JavaScript libraries that make it easy to use our PCP language in server-

and client-side code. Next, we conduct an online usability study with 25 participants,

measuring their ability to author PCPs using our language and tools. Our results show that

most participants can rapidly comprehend our language and author PCP descriptions, even

for complex policies.

Finally, we replicate and extend prior work analyzing Web PCPs [56, 107]. In contrast to

prior efforts that use a simple heuristic that only considers the minimum length and allowed

characters for measuring PCP strength, our analysis takes into account all requirements of

the PCP. Additionally, our analysis includes both upper- and lower-bound estimates for PCP

strength that take into account how users select passwords [101, 164]. This improved analysis

shows that most PCPs in our dataset fail to require passwords that resist offline attacks.

Furthermore, for users that prefer passwords comprised primarily of digits [101], nearly half

of the evaluated PCPs fail to require passwords that resist online attacks.

Research Artifacts: Our data, scripts, and prototypes are available at https://

userlab.utk.edu/publications/gautam2022improving.

3.1 PCP Dataset

To inform the design of our PCP language, we gathered an extensive corpus of PCPs deployed

on the Web. Our sample is demographically diverse, including websites from highly-populated

countries in each of the six inhabited continents: Africa—Nigeria, Asia—India, Europe—

Germany and the United Kingdom (UK), Oceania—Australia, North America—United States

(US), South American—Brazil. We also measured PCPs from China, Iran, and Russia to see

if their high levels of Internet censorship [76] impacted PCP selection.

27

https://userlab.utk.edu/publications/gautam2022improving
https://userlab.utk.edu/publications/gautam2022improving

3.1.1 Sources

We used the Alexa and Quantcast lists of the most popular websites to select websites for

each country. In January 2019, we downloaded the Alexa lists of the 250 most popular US

websites and the top 50 lists for the remaining nine countries we examined. As we began to

analyze these websites, we noticed a high overlap between the websites listed for each country.

To obtain more unique websites for each country, in February 2019, we downloaded the

Quantcast lists of the top 50 most popular websites for each country. We selected Quantcast

as its country-specific lists had minimal overlap with global and US-specific websites from

Alexa. We also analyzed the websites listed in the Quantcast top 50 global lists. In total,

these lists identified 626 unique websites.

Next, we removed websites that do not support account creation, delegate all

authentication to single sign-on (SSO) providers, or require resources we do not have to

create an account (e.g., a bank account). For the remaining 320 websites, we identify

websites that use the same authentication backend (e.g., google.com and youtube.com),

keeping only a single representative website. We then extracted PCPs from the remaining

270 websites.

3.1.2 Analysis

To extract the PCP for each website, we took the following steps. First, we would look for

PCP components described textually on the account creation web page or elsewhere on the

domain. Second, we would examine the HTML form, looking for validation attributes that

restricted what users could enter for their password. Third, we evaluated any JavaScript

used to validate the password, identifying restrictions enforced therein. Fourth and finally,

we manually tried to enter various passwords of different lengths and compositions.

3.1.3 Limitations

While our data collection resulted in a large and rich corpus, we recognize there are limitations

to our methodology. First, while covering more features than past efforts [56, 74, 107], our

data is not comprehensive. Still, we believe our dataset is sufficient for our purposes as we

28

achieved saturation [4]—i.e., we stopped discovering new PCP features at the latter end of

our analysis.

Second, it is likely that we missed some PCP edge cases. Only by investigating the

server-side code would it be possible to identify the exact PCP definitively. Automating the

process to check more password combinations would be problematic as this would involve

flooding the website with passwords.

3.2 PCP Description Language

Using our PCP dataset, we design a language for describing PCPs. Our language has two key

design goals: (1) describe the PCPs in our dataset and (2) be simple to read and write for

administrators and machines. To achieve these goals, we followed an iterative design process:

First, we created a draft version of our PCP language based on prior research (§3.8)

and PCP features in our dataset. Second, we encode the PCPs in our data set using this

language. When we encountered a PCP that was onerous to encode, we modified our draft

PCP language to address pain points. We would then re-encode all prior PCPs to ensure that

our change did not cause a usability regression. Third, after encoding all PCPs, we reviewed

our language with others from our research group, focusing on improving the language’s

readability and identifying PCP features they had encountered in the wild but are absent

in our PCP dataset. Based on their feedback, we updated our language and re-encoded

the PCPs in our dataset (continuing to look for usability issues). After making a full pass

encoding PCPs without changing our language, we considered it finished.

3.2.1 PCP Language

A PCP in our language is composed of two components: (a) a set of characters allowed in a

password and (b) rules about password composition.

The allowed characters are grouped into named, disjoint sets of characters—a charset. By

default, the PCP uses the following four default charsets: lowercase English letters (lower),

uppercase English letters (upper), Arabic numerals (digits), and the OWASP password

symbols [132] (symbols). Our language allows these default charsets to be modified, new

29

charsets to be added, and default ones to be removed. Our language also provides an

alphabet charset that, if used, merges and replaces the default lower and upper charsets.

A PCP composition rule is a set of requirements that passwords must comply with to be

valid. If a PCP contains multiple rules, a password need only satisfy the requirements for a

single rule to be valid (the overwhelming majority of PCPs only have one rule). For example,

if one rule specified that passwords must be eight characters long and contain lowercase

letters and symbols and another rule specified that passwords must be fifteen characters

long, fifteen character passwords of only digits would be valid, whereas fourteen character

passwords of only digits would not.

The possible requirements in each rule are as follows:

• min_length is a positive integer specifying the password’s minimum length (inclusive).

All rules require that min_length is set, with all other requirements optional.

• max_length is a positive integer specifying the password’s maximum length (inclusive).

• max_consecutive is a positive integer indicating the maximum number of times the

same character can appear consecutively in a password. For example, to prevent

passwords such as AAA or ZZZ, max_consecutive would be set to 2.

• prohibitted_substrings is a set of strings that may not appear anywhere in the

password. When used, this commonly includes the website name and other related

words. For example, to prohibit the string "google", prohibited_substrings would

be set to ["google"].

• require is a list of charsets that must appear in the password. For example, to require

that a password must have letters and digits, require would be set to

["alphabet", "digits"].

• require_subset is an object containing a list of charsets (options) from which count

of those options must appear in the password. For example, to require that a password

must have digits and symbols, but not necessarily both, require_subset would be set to

{"options": ["digits", "symbols"], "count": 1}. If not set, options defaults

to using all the PCP’s charsets; count defaults to one.

30

• charset_requirements is a map between charset names and requirements for the

named charset. For example, to add additional requirements for digits,

charset_requirements would be set as such: {"digits": {requirements}}.

Possible requirements include:

– min_required is a positive integer specifying the minimum number of times this

charset must appear in the password.

– max_allowed is a positive integer specifying the maximum number of times this

charset may appear in the password. For example, if set to two for the digits

charset, passwords containing 111 or 123 would be rejected.

– max_consecutive is a positive integer indicating the maximum number of times

this charset can appear consecutively in a password. For example, if set to two for

the alphabet charset, passwords containing abc or ddd would be rejected.

– required_locations is a list of indices for the password at which this charset

must appear. Passwords are zero-indexed and negative indices are supported

(i.e., reverse string indexing). For example, to require a password that starts and

ends with a symbol, required_locations for the symbols charset would be set

to [0, -1].

– prohibited_locations is a list of indices for the password at which this charset

must not appear. Passwords are zero-indexed and negative indices are supported

(i.e., reverse string indexing). For example, to prevent a password from having the

last two characters as digits, prohibited_locations for the digits charset would

be set to [-1, -2].

A JSON schema for our final PCP language is given in Listing 3.1. Examples of real-world

PCPs encoded using our language are given in Listing 3.2.

Examining the JSON-encoded PCPs in our dataset, we find that they are 17–205 characters

long, with a median length of 36 characters. These small sizes are evidence that our PCP

efficiently encodes passwords. Lastly, we note that while we used JSON to encode policies,

31

1 {
2 "charsets": {
3 "name": "characters", . . .
4 },
5 "rules": [{
6 "min_length": Z+,
7 "max_length": Z+,
8 "max_consecutive": Z+,
9 "prohibited_substrings": ["substring", . . .],

10

11 "required": ["charset_name", . . .],
12 "require_subset": {
13 "options": ["charset_name", . . .],
14 "count": Z+

15 },
16

17 "charset_requirements": {
18 "charset_name": {
19 "min_required": Z+,
20 "max_allowed": Z+,
21 "max_consecutive": Z+,
22 "required_locations": [Z+, . . .],
23 "prohibited_locations": [Z+, . . .],
24 },. . .
25 }
26 },. . .]
27 }

Listing 3.1: JSON schema for our PCP language

32

1 # Passwords of length six to twleve (walmart.com)
2 {"min_length": 6,"max_length": 12}
3

4 # Password must include at least one digit, symbol, and alphabetic character
(facebook.com)

5 {
6 "min_length": 6,
7 "require": ["digits", "alphabet", "symbols"]
8 }
9

10 # Custom definition for symbols that are allowed (macys.com)
11 {
12 "charsets": {"symbols": "!\"#\$%&'()*+:;<>?@[]^`{}~"},
13 "rules": [{"min_length": 7,"max_length": 16}]
14 }
15

16 # Password must have at least one alphabetic character and either a digit or a
symbol (bbc.com)

17 {
18 "min_length": 8,
19 "max_length": 50,
20 "require": ["alphabet"],
21 "require_subset": {
22 "count": 1,
23 "options": ["digits", "symbols"]
24 }
25 }
26

27 # Password can be eight characters if it contains a lowercase character and a
digit. Otherwise, it must be fifteen characters long. (github.com)

28 {
29 "rules": [
30 {"min_length": 8,"require": ["lower", "digits"]},
31 {"min_length": 15}
32]
33 }

Listing 3.2: PCP examples encoded in our language

33

they could also easily be encoded in a wide range of data-interchange formats (e.g., YAML,

protobuf).

3.3 PCP-Compliant Password Generation

To demonstrate the feasibility of our proposed language, we (1) created libraries for using our

PCP language, (2) built proof-of-concept websites that publish their PCP using our language,

and (3) modified a password manager to generate PCP-compliant passwords.

3.3.1 Library Implementations

We constructed Python2 and JavaScript3 libraries to support our PCP language. These

libraries enable the programmatic creation of PCPs, encoding PCPs to JSON, and parsing

PCPs from JSON. They also automatically validate PCPs to ensure they are both semantically

correct—e.g., that min_length is appropriately set and that character sets do not overlap—

and logically consistent—e.g., that a policy does not simultaneously require and prohibit a

character class.

These libraries also support checking passwords against a PCP. Finally, they can evaluate

the strength PCPs, giving administrators an idea of how likely a PCP is to result in passwords

that resist online and offline guessing attacks (see Appendix B for more details).

3.3.2 Website Implementation

We built five proof-of-concept websites, each with a PCP of varying complexity. We

implemented these websites using Flask (Python) on the backend and JavaScript on the

frontend. Each website publishes its PCP and provides a form where passwords can be

generated, submitted, and verified.

We identified three approaches for publishing PCPs:
2https://pypi.org/project/password-policy/
3https://www.npmjs.com/package/password-composition-policy

34

https://pypi.org/project/password-policy/
https://www.npmjs.com/package/password-composition-policy

1. HTML: A new attribute could be added to the password field, which would be set to

the JSON-encoded PCP. Alternatively, the PCP could be encoded as XML within the

HTML, adjacent to the password field.

2. HTTP header: An HTTP header (e.g., X-PCP) can specify the JSON-encoded PCP

for relevant pages.

3. File: The JSON-encoded PCP could be available at a known URL (e.g., domain.tld/

pcp.json). If there are multiple PCPs for a domain, this file could contain a mapping

between URLs and PCPs.

Our websites use the third approach as it is the easiest to implement and the only approach

which can work with non-browser-integrated managers. We checked the validity of submitted

passwords on the client-side using our JavaScript library and on the server-side using our

Python library. A significant benefit of publishing PCP and using our tool to validate them

is that if the PCP is ever updated, there is no need to separately update the validation code,

simplifying developer workloads and preventing situations where the client- and sever-side

validation may become out of sync.

3.3.3 Password Manager Implementation

We modified BitWarden, a popular open-source password manager, to check if a domain

hosts a /pcp.json file, and if so, to use it to generate PCP-compliant passwords. The actual

generation is handled by our JavaScript library and occurs over three phases:

In the first phase, we set the password length to the smallest min_length (if there are

multiple rules). Next, we use our JavaScript library to check if passwords of this length using

this PCP will be offline-resistant password [57]. If not, we choose the smallest length that

would result in an offline-resistant password.

In the second phase, we create an array of length equal to our calculated minimum length.

Each position within the array contains an (initially empty) list of which charsets can appear

at that position. To fill these lists, we first satisfy required_locations by setting the list

at the specified index to its respective charset. Next, we set the remaining empty lists as

35

domain.tld/pcp.json
domain.tld/pcp.json
/pcp.json

necessary to satisfy min_required and required. Lastly, the remaining empty lists are set

to include all allowed character sets unless doing so would violate max_allowed.

In the third phase, we shuffle all indices not set due to required_locations. We then

generate a password by randomly selecting a character at each index from the charsets in the

list at that index. We then check the generated password against the other requirements in

the PCP. If it is not, we repeat phase three until we generate a valid password. In addition

to ensuring that generated passwords are PCP-compliant, we also follow recommendations

by Oesch et al. [124] and ensure that generated passwords are not randomly weak. This is

done by checking passwords using zxcvbn and ensuring that the generated passwords receive

the highest strength rating (4).

3.4 Usability Study

To evaluate the usability of our developed language and libraries, we conducted an IRB-

approved user study wherein participants authored five PCPs of varying complexity using

our PCP language. This section gives an overview of the study and describes the tasks and

study questionnaire. In addition, we discuss the development and limitations of the study.

The study instrument is given in Appendix A.

3.4.1 Study setup

The study ran for three weeks starting Friday, January 28, 2022, and ending Tuesday, February

15, 2022. In total, 25 participants completed the study. The study was designed to take

about thirty to forty minutes and participants were compensated with a $25 Amazon gift

card. Participants were required to have Python 3.6.1 or higher installed on their system.

The study was administered online using Qualtrics.

Participants were recruited from the EECS department at our local university using

posters, email invitations, and class announcements. We also asked researchers at other

universities to share the study with their students. We chose to use EECS students as we felt

they were a good representation of novice developers, and we hypothesized that our language

and libraries would be sufficiently usable to support novice developers.

36

3.4.2 Study tasks

Participants started by reading and accepting an informed consent statement. Next,

participants installed our Python library and executed a Python instruction that allowed us

to confirm that the library was correctly installed. They then entered basic demographic

information (class standing, major, gender).

Participants were told that in the study they would be authoring five PCPs. They were

given a link to documentation for the Python library and informed that this link would

also be provided with each task. The documentation included a description of our language,

source code examples, and JSON-encoded PCPs.

Participants encoded five PCPs:

1. The password must be at least 8 characters.

2. The password must be at least 8 characters and contain at least two of the following:

uppercase, lowercase, digits, symbols.

3. The password must be at least 12 characters, contain a letter and a number, and not

contain whitespace.

4. The password must be at at least 8 characters long and contain a letter and a number.

Alternatively, the password must be at least 15 characters.

5. The password must be at least 8 characters, contain at least two symbols, contain

either an upper or lowercase letter, not contain the string "mywebsite", and none of

the following characters: ^'";/\

Upon submitting a PCP, the survey checked whether the submitted PCP was parsed

correctly. It also verified that the PCP was correct by checking two valid and two invalid

passwords. Participants were allowed to continue when they submitted a correct PCP

description or once two minutes had passed (to prevent participants from becoming stuck).

After submitting their policy, participants completed an After-Scenario Questionnaire [149]

(ASQ) about their experience.

37

Upon completing all five policies, participants were asked to fill out the System Usability

Scale [23] (SUS) regarding their overall experience. They were also asked what they liked

most and least about the system and library. Finally, they were asked to provide any other

feedback they had.

3.4.3 Demographics

Participants were largely male: male (19; 76%), female (6, 24%). All students studied

computer science (23; 92%) or electrical engineering (2; 8%). Participants were all more

senior students: juniors (2; 8%), seniors (10, 40%), graduate students(13, 52%).

3.4.4 Study Design

Initially, we structured study compensation as a raffle, where five participants would receive

a $50 Amazon gift card. Under this incentive scheme, only two participants completed our

study. This led us to revise our study to compensate every participant (including the two

who had already completed it). After making this revision, re-obtaining IRB approval, and

re-launching the study, we quickly gathered our remaining 23 participants.

We also changed our documentation between the two iterations of our study. Initially,

the survey provided a link to the documentation explaining how to author policies in JSON,

with that documentation providing a link the Python library’s documentation. However,

after looking at the first two participants’ results, it became clear that they lacked proficiency

in JSON. To encourage participants to use the Python library, we changed the survey’s

documentation link to point to the Python library’s documentation, with that documentation

providing a link to the JSON documentation. Participants could still directly author JSON,

and eight (40%) did for at least one task.

3.4.5 Limitations

Our students do not have the same experience as the administrators responsible for authoring

PCPs. Similarly, participants had less incentive to learn and correctly enter policies than

administrators trying to use these tools. As such, our results may not fully represent the

38

usability of our tooling for the target audience. However, past research has shown that

students can serve as a reasonable approximation for developers [119, 118].Lastly, our study

only measured the ability of participants to author policies, not to read them.

3.5 Study Results

In this section, we report the significant findings of our user study. Quantitative results for

each policy are given in Table 3.1. Mean completion times use the geometric mean [149].

3.5.1 Success Rates

Overall, participants did very well at encoding policies. Two participants struggled at nearly

all tasks, only correctly encoding a single PCP. Excluding them from our data, completion

rates move to 100%, 100%, 96%, 100%, and 68%, respectively.

In policies, we detected three types of errors. First, incorrectly formatted JSON (6 total),

likely stemming from unfamiliarity with JSON. Second, minor errors (10 total), such as

forgetting to include a prohibited character or including a rule from a previous policy. We

only classify errors as minor if users showed comprehension of the tested language and library

features but made an error with the values used. Third, major errors (4 total) resulting in an

entirely incorrect submission. These errors indicate that participants failed to understand

how to use the language and library.

Looking at Policy 5’s results more closely, we see that three errors (12%) arose due

to incorrectly encoded JSON, with the remaining seven (28%) arising due to participants

forgetting to include one or more of the prohibited characters. This happened even though

these same participants had properly excluded characters in Policy 3.

3.5.2 Completion Times

Participants generally completed tasks quickly, with (geometric) mean times ranging between

36 seconds and 4 minutes. However, we note that these times are lower bounds as they do not

include time participants may have spent reading documentation between tasks and before

39

Table 3.1: Quantitative results by policy

Policy Correct
JSON

mistakes
Minor
errors

Major
errors

Mean time
in minutes

Mean
ASQ

1 92% 0 0 2 1.5 7.0
2 92% 1 0 1 1.4 6.7
3 88% 1 2 1 4.6 5.7
4 96% 1 1 0 0.6 6.3
5 64% 3 7 0 4.0 6.0

40

they started interacting with the task. Still, these times suggest that it is easy to pick up

and use our language and library with no prior experience.

Using a two-way ANOVA, we find that while there is a statistically significant difference

between how long each policy took to create (F (4, 170) = 8.731, p < 0.001), though

this is not surprising given the difference in difficulty between policies. We do not find a

statistically significant difference between time taken to author PCPs using JSON or our

library (F (1, 170) = 0.109, p = 0.74), nor for the interaction effect (F (4, 170) = 0.027,

p = 1.00). This is a surprising result as, based on our first two respondents, we expected

participants to struggle authoring JSON.

3.5.3 Perceived Usability

Overall, policies received good ASQ scores (see Table 3.1), indicating that it was easy and

relatively quick to author policies. The mean SUS score was 65, which can be interpreted

as “Good” usability [17], receives a C grade [149], and is just above the 40th percentile of

systems studied with SUS. While this is an acceptable score for our language and library to

be used in the wild [17], it still fell short of our initial expectations.

Looking into the qualitative feedback, we discovered three primary critiques of our tooling.

First, many participants felt that JSON was confusing. Second, participants wanted additional

documentation. While we provided one example for every PCP feature, they wanted even

more. Third, participants were confused by our library providing two ways to create PCPs:

(a) a class exactly matching the JSON schema and (b) a simplified class that could be used

to encode simple PCPs more directly. While we created this second method to reduce the

amount of code participants needed to write for simple PCPs, it ended up causing unneeded

confusion and is a prime candidate to remove from our library.

3.5.4 Takeaways

Overall, our results show that our proposed language is promising, though it has room for

improvement. Other than the two participants who failed all but one task, every other

participant correctly encoded Policies 1–4, except for one mistake in Policy 3.

41

However, of these 23 participants, nine (39%) submitted incorrect solutions for Policy 5.

One-third of these errors (3) arose from improperly encoded JSON. This suggests that in line

with participant feedback, it might be worthwhile to consider other more developer-friendly

encodings (e.g., YAML) or supporting multiple encodings, allowing developers to choose

which they will use. Alternatively, pushing for programmatic specification of PCPs could be

used to avoid encoding issues entirely.

Two-thirds of the errors (6) for Policy 5 arose from minor issues with the PCP. Half

of these issues (3) involved the participants removing some but not all of the prohibited

characters from the symbols list. This may have arisen as the textual policy described a

denylist for restricted characters, whereas participants chose to create an allowlist of symbols.

To address this, the library could allow users to specify a denylist for characters and then

have the library generate the appropriate character set, though further research would be

needed to measure the efficacy of this approach.

The other issues with Policy 5 (3) arose from participants failing to include the list of

restricted characters, even though the other requirements for this policy were included. This

happened even though these same participants had properly excluded characters in Policy

3. It is unclear whether this issue stems from something in the design of our language, the

general challenge of remembering all the requirements in a complex policy, or study fatigue.

3.6 Website Analysis

Using the PCP dataset we collected to build our language, we replicated and extended prior

work analyzing website PCPs [56, 107]. Our analysis covers (1) the strength of PCPs, (2) the

requirements used in PCPs, and (3) additional non-PCP authentication-related details.

To estimate PCP strength, we calculate the average number of guesses an adversary

would need to discover a password that (a) complies with the PCP and (b) is of the smallest

allowed length. In contrast to previous work [56, 107] which calculates strength based only

on the smallest allowed length and count of allowed characters (i.e., #characterslength), our

estimates take into account all PCP features. First, we create a canonical representation of

the PCP. Second, we enumerate all unique password compositions—a password composition

42

specifies the number of characters from each character class that makes up a password. Third,

for each password composition, we calculate the number of unique passwords that exist for

that composition, reducing this number to account for passwords that fail to meet the various

chartset_requirements. Finally, we sum these counts. A more detailed description of this

algorithm is given in Appendix B.1.

In addition to estimating PCP strength based on password chosen entirely at random (as

is done in previous research [56, 107]), we also consider PCP strength under conditions where

users prefer characters from certain character sets: (a) preferring alphabetic (particularly

lowercase) characters over non-alphabetic characters (as commonly seen in the US [101]) and

(b) preferring numeric characters (as commonly seen in China [101, 164]). These changes

help our analysis to more accurately measure the strength of PCPs under a range of usage

scenarios. These calculations are performed by modifying our enumeration of password

compositions only to include compositions that use the most preferred character classes unless

the PCP specifically requires another character class. A more detailed description is given in

Appendix B.2.

Throughout our analysis, we categorize PCPs by (i) the country where they are popular, (ii)

their Alexa global rank, (iii) their use case, (iv) whether they generate revenue by displaying

ads, (v) whether usernames on the website were publicly available or easily guessed, and (vi)

whether a data breach had been reported for the website. All categorizations are mutually

exclusive, with PCPs popular in multiple countries categorized as “Global”. Table 3.2 lists

these categories and the number of PCPs in each.

3.6.1 PCP Strength

Figure 3.1 gives the distribution of password strengths. If passwords are generated entirely at

random, nearly all PCPs are strong enough to resist online attacks (106 guesses [57]), though

only about 40% are strong enough to resist offline attacks. For passwords where alphabetic

characters are preferred, nearly all PCPs fall into the online-offline chasm [55]—strong enough

to resist online attacks but not offline attacks(surviving 1014 guesses [57]). This chasm is

problematic because PCPs in it impose a usability burden to pick more complex passwords

than necessary to resist online attacks, but which are still too weak to resist offline attacks. For

43

Table 3.2: Number of PCPs in each category

Country Count

Global 65
Australia 13
Brazil 14
Germany 17
India 9
Nigeria 13
UK 8
US 72
China 28
Iran 12
Russia 19

Popularity Count

Top 10 8
Top 50 24
Top 100 25
Top 500 59
Top 1000 25
Top 5000 79
5000+ 50

Use case Count

E-commerce 58
Finance 10
News 72
Social media 55
Software 13
Streaming 28
Other 34

Ad
Provider Count

Yes 158
No 112

Public
username Count

Yes 43
No 227

Past
breach Count

Yes 51
No 219

44

100 102 104 106 108 1010 1012 1014 1016 1018 1020

PCP Strength
0.0

0.2

0.4

0.6

0.8

1.0
CD

F
Random
Alphabetic
Numeric

(a) CDF of PCP strengths

100 102 104 106 108 1010 1012 1014 1016 1018 1020

PCP Strength
0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

Random
Alphabetic
Numeric

(b) Distribution of PCP strengths

106 and 1014 are estimates of the number of guesses a password should resist to survive online and
offline attacks, respectively [57].

Figure 3.1: PCP Strengths
45

passwords where numeric characters are preferred, half of the analyzed PCPs are insufficient

to prevent online attacks, and none are strong enough to resist offline attacks.

Comparing mean PCP strength under different password generation strategies, we find

that passwords generated at random (3.5 ∗ 1017) are roughly two orders of magnitude stronger

than alphabetic-preferred passwords (2.3 ∗ 1015) and six orders of magnitude stronger than

numeric-preferred passwords (2.1 ∗ 1011). This highlights the benefits of using a password

generator to create passwords. It also demonstrates why it is crucial to consider generation

strategy when estimating PCP strength, as assuming passwords are selected entirely at

random can significantly overestimate the protectiveness of PCPs.

Strength by Category

Figure 3.2 shows the correlation between PCP strength and a website’s Alexa global ranking.

In general, we find that higher-ranked websites have stronger PCPs. Using Pearson’s r and

log scales for both rank and PCP strength, we find a medium effect size for entirely random

(r = −0.30, p < 0.001), alphabetic-first (r = −0.34, p < 0.001), and numeric-first (r = −0.34,

p < 0.001) strengths.

We found a statistically significant difference between strengths based on country for

generation at random and alphabetic first generation, but not for numeric-first generation (one-

way ANOVA—entirely random—F (10, 259) = 1.87, p < 0.05; alphabetic-first—F (10, 259) =

2.05, p < 0.05; numeric-first—F (10, 259) = 0.29, p = 0.98), We did not find any meaningful

pairwise differences for the statistically significant results using Tukey’s test. There was

no significant difference based on use case (entirely random—F (5, 263) = 1.04, p = 0.40;

alphabetic-first—F (5, 263) = 0.59, p = 0.74; numeric-first—F (5, 263) = 0.40, p = 0.88).

Figures showing strength differences based on country, global rank, and use case can be

found in Appendix D. We also tested whether (i) ads, (ii) public usernames, (iii) or data

breach history impacted PCP strength, finding no statistically significant differences.

46

100 101 102 103 104 105 106 107

Alexa Global Rank
100
102
104
106
108

1010
1012
1014
1016
1018
1020

PC
P

St
re

ng
th

Random
Alphabetic
Numeric

Figure 3.2: PCP strength by Alexa global rank

47

3.6.2 PCP Features

The most common minimum lengths for PCPs are 6 (128; 47%) and 8 (100; 37%) (see

Figure 3.3a). Just over a tenth of PCPs (29; 11%) allowed passwords with fewer than 6

characters, with five (5; 2%) allowing passwords with a single character. These low length

requirements are not only problematic for user-generated passwords but also for password

generators, which are known to occasionally generate random but weak passwords at shorter

password lengths [124].

Most PCP rules (195; 72%) set a maximum length for passwords, with a wide range of

values (see Figure 3.3b). Just over a tenth (28; 10%) limit passwords to 16 or fewer characters,

with four (4; 1%) limited to 12 or fewer characters.

The next most common requirement was having required character classes (51; 19%):

digits (42/51; 82%), alphabet (37/51; 73%), lower (12/51; 24%), upper (10/51; 20%), and

symbols (4/51; 8%). This was followed by requiring a subset of character classes (43; 16%): at

least one (5/43; 12%), two (14/43; 33%), or three (13/43; 30%) characters from all character

classes; at least one symbol or digit character (9/43; 21%); at least one upper or symbol

character (1/43; 2%); or at least one upper, digit, or symbol character (1/43; 2%).

The remaining requirements only appeared rarely. For prohibited substrings (11; 4%),

websites primarily restriction personal information (10/11; 91%): name (6/11; 55%),

email (5/11; 45%), username311, birthday211, website name (1/11; 9%). Rules also included

max consecutive characters (9; 3%) with values of one (1/9; 11%), two (2/9; 22%),

three (4/9; 44%), and seven (1/9; 11%). Finally, one PCP (1; 0%) required two lower case

letters and two digits.

Multi-Rule PCPs

Of particular interest, we discovered three PCPs (3; 1%) that had more than one rule.

gumtree.com.au Required twenty-character passwords unless the password included an

alphabetic character and either a digit or symbol, in which case ten-character passwords

were allowed.

48

1 3 4 5 6 7 8 9 10
Minimum Length

0

20

40

60

80

100

120
Co

un
t

(a) Histogram of minimum lengths

0 100 200 300 400 500
Maximum Length

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) CDF of maximum lengths

Figure 3.3: PCP lengths

49

github.com Required fifteen-character passwords unless the password included both a

lowercase character and a digit, in which case eight-character passwords were allowed.

yy.com Required nine-character passwords unless the password included an alphabetic

character, in which case an eight-character password could be used. This could be to

encourage Chinese users to pick non-digit-only passwords, which is common in that

culture [101, 164].

Ignoring specific requirements, these PCPs all share a common goal: allow users to choose

between short but complex or long but simple passwords.

Features by Category

We find statistically significant difference for minimum length by country (one-way ANOVA—

F (10, 259) = 2.74, p < 0.01), global rank (Pearson’s-r—r = −0.30, p < 0.001), and use

case (one-way ANOVA—F (6, 263) = 3.57, p < 0.01). Within these categories, high-ranked

websites are much more likely to allow passwords shorter than six characters (see Figure 3.4b).

Similarly, “streaming” websites have lower minimum length requirements (see Figure 3.4a),

with the difference being statistically significant for “Ecommerce” (p < 0.01) and “Other”

(p < 0.05).

We did not find statistically significant differences in maximum length by country (one-way

ANOVA—F (10, 259) = 1.05, p = 0.40), global rank (Pearson’s-r—r = 0.01, p = 0.88), or

use case (one-way ANOVA—F (6, 263) = 1.40, p = 0.21). We did not see any meaningful

difference for other restrictions, though we did not test for statistical significance.

Figures showing differences for minimum and maximum length based on country, global

rank, and use case can be found in Appendix E. We also tested whether (i) ads, (ii) public

usernames, (iii) or data breach history impacted PCP minimum and maximum length, finding

no statistically significant differences.

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Minimum Length

0%

10%

20%

30%

40%

50%
Pe

rc
en

ta
ge

Ecommerce
Finance
News
Social
Software
Stream
Other

(a) By use case

100 101 102 103 104 105 106 107

Alexa Global Rank

2

4

6

8

10

M
in

im
um

 L
en

gt
h

(b) By Alexa global rank

Figure 3.4: PCP minimum lengths

51

3.6.3 Website Analysis

We also examined the following items for each website: (a) whether account creation and

login required HTTPS, (b) which SSO providers, if any, were supported, and (c) whether a

password strength meter is shown to users.

For most websites (255; 94%) HTTPS was required to view the account creation and

login pages. Still, there were fifteen (15; 6%) websites where we could access the account

creation or login interface over HTTP.4

A third of websites (92; 34%) support at least one single sign-on (SSO) provider for account

creation and authentication. The most popular SSO providers are Facebook (82/92; 89%),

Google (65/92; 71%), Twitter (21/92; 23%), VK (10/92; 11%), and mail.ru (6/92; 7%), with

the remaining 20 SSO providers being represented on fewer than five websites.

We find that just over a tenth (35; 13%) of websites show users a strength meter when

they are creating passwords. We also find that just under a tenth (22; 8%) use a strength

checker as part of their password policy—i.e., passwords must be a certain strength to be

accepted.

Websites by Category

For websites whose account creation or login pages can be accessed over HTTP, the majority

were in China: China (8/15; 53%), Russia (2/15; 13%), and one each (1/15; 7%) for India, Iran,

Nigeria, Brazil, and the US. It is unclear why China is so different, but we find this correlation

troubling. These types of websites are most likely to occur in less popular websites.4

Within certain countries we see much higher rates of adoption of SSO:

Russian (11/19; 58%), Nigeria (6/13; 46%), Brazil (6/14; 43%), Australia (5/13; 38%),

UK (3/8; 38%), India (3/9; 33%), Global (21/65; 32%), US (21/72; 29%), China (6/28; 21%),

Iran (2/12; 17%). We also see a trend that the less popular sites are more likely to adopt

2FA: Top 10 (1/8; 13%), Top 50 (7/24; 29%), Top 100 (4/25; 16%), Top 500 (17/59; 29%),

Top 1000 (6/25; 24%), Top 5000 (37/79; 47%), 5000+ (20/50; 40%). For categories, SSO is

more evenly dispersed, though news (35/72; 49%) sites have higher support for SSO.
4The list of websites is given in Appendix C.

52

We do not find any meaningful effect from the categories on strength meters or internal

strength checks for passwords.

3.7 Discussion

In this section, we discuss observations from our research.

3.7.1 PCP Recommendations

Of all the PCPs encountered in our analysis, we were most interested in the multi-rule PCPs,

which allowed users to choose between short but complex or long but simple passwords.

This ensures that passwords will resist offline attacks without causing unnecessary usability

burdens. Moreover, this approach returns the locus of control to users—i.e., while PCPs are

often viewed as restrictive, and therefore less usable [90, 155, 156], multi-rule PCPs give users

a choice of which PCP is most appropriate for them. We hypothesize that by giving this

control back to users, not only will they be more satisfied with the PCP, but they will also

create stronger passwords. Future work could validate this hypothesis and try to determine

what the ideal multi-rule construction is. For example, would more rules be even better,

providing even more fine-grained control of the types of passwords users can select?

Another observation from our analysis is the importance of PCP design for ensuring the

security of passwords not generated entirely at random. Whereas PCP requirements reduce

the strength of passwords generated entirely at random (by shrinking the search space), they

increase the strength of passwords generated with preferences to a given character class.

Thus there is an interesting interplay between PCPs and passwords based on how they are

generated. More specifically, we note that increasing length is the easiest way to improve

strength, regardless of generation strategy. Similarly, we find that it is likely advantageous to

limit users from having too much of their password be composed of digits (or symbols), as

this significantly weakens those passwords and may lead to passwords vulnerable to online

guessing attacks. As such, we recommend that administrators use a multi-rule approach that

allows users to choose between long but simple passwords or short but complex passwords.

53

This allows machine-generated passwords to be short but ensures that human-generated

passwords are strong enough to resist attack.

3.7.2 NIST Guidelines

NIST provides PCP guidelines (i.e., non-compulsory recommendations) for US companies

and organization [62]. While our dataset includes a wealth of PCPs for global and non-US

websites, we still think it is interesting to see which of these PCPs conform to the NIST

guidelines.

We find that less than half of PCPs (106; 39%) meet NIST’s recommended minimum

length of eight characters. Similarly, we find that most (195; 72%) implement unnecessary

maximum length requirements.

In line with NIST recommendations, most PCPs (177; 66%) do not have any composition

requirements (this would be more positive if they met the minimum length requirements).

Similarly, only a small fraction (8; 3%) reject specific symbols, which can be an indication of

improper password hashing.

3.8 Comparison with related works

This section discusses comparison of our work with other related works on password generation,

PCP languages, analysis of Web PCPs, and PCP usability. The comparison of our PCP with

others in literature is shown in Table 3.3.

3.8.1 PCP Languages

Examining our data, none of the previous PCP languages(see §2.7.1) can encode all the PCPs

in our dataset. However, these proposals could be extended to support the features identified

in our research. During our PCP language generation process (see §3.2), our team built and

tested several versions of our PCP language that were HTML- and XML-based. Ultimately,

we rejected these approaches because our team felt that encoding policies in these languages

was cumbersome and that the resulting policies were difficult to read. Still, the results of

54

Table 3.3: Comparison between PCP languages

PCP Features T
hi

s
pa

pe
r

D
an

ie
lB

at
es

[1
9]

Is
ia

h
M

ea
do

w
s

[1
09

]

H
or

sc
h

et
al

.[
74

]

Define character sets ✓ ✓ ✓ ✓
Multiple rule sets ✓

min_length ✓ ✓ ✓ ✓
max_length ✓ ✓ ✓ ✓
max_consecutive ✓ ✓ ✓
prohibited_substrings ✓ ✓

required ✓ ✓ ✓ ✓
require_subset ✓ ✓

charset_requirements
.min_required ✓ ✓
.max_allowed ✓ ✓
.max_consecutive ✓
.required_locations ✓ ✓
.prohibited_locations ✓ ✓
reverse indexing ✓

55

our user study show that there is significant room for improving our proposed language,

and future work could explore integrating paradigms from these prior proposals with our

language or testing whether, contrary to our team’s perceptions, HTML- or XML-based

would be better received than our JSON-based approach by developers. In this regard, the

main contribution of our paper is the identification of features that must be included in such

PCP languages.

3.8.2 Web PCP Analysis

For the most part, our results are similar to past findings of Florêncio and Herley [56] and

Mayer et al. [107]. Overall, PCP strength (for random generation) is similar in all studies.

However, as our improved strength calculation results in lower estimates of PCP strength,

the similarity of our results suggests that PCPs have continued to get stronger over time,

though that progress is slow and the delta is not that meaningful. When using PCP strength

estimates based on random generation (as the prior work does), we find that PCP strength

has become more bimodal, with a clear contrast between websites that require passwords to

be offline-resilient and those that only require online-resilience. While this may only be an

artifact of our increased precision in plotting PCP strength (the prior worked binned strength

into large ranges), we do not believe so and think it is an area that could be explored more in

future research. Like the prior work, we find that most PCPs reside within the online-offline

chasm identified by Florêncio and Herley [57].

Like prior work, we find no statistically significant correlations when comparing PCP

strength based on country, use case, public usernames, and past breaches. However, unlike

the prior work, we find a correlation between a website’s popularity and the strength of its

PCPs. This difference is most likely explained by (a) our larger data set, (b) the increased

fidelity of our strength estimates, and (c) the use of log adjusted strength and global ranks.

Also, whereas prior work found a negative correlation between whether a website served ads

and its PCP strength, we find no statistically significant correlation.

56

3.8.3 PCP Usability

Our research finds that length has the greatest impact on PCP strength for both passwords

generated at random and using an alphabetic-first approach. As such, we echo prior

recommendations for PCPs to focus on length as opposed to complexity. For those that want

the best of both worlds, multi-rule PCPs can be used that allow short but complex or long

but simple passwords, giving users the locus of control for this decision and thereby

increasing usability. Similarly, due to the weaknesses of digit-first generated passwords,

PCPs should likely restrict the usage of too many digits in a password.

3.9 Conclusion and Future Work

In this work, we developed a PCP language that websites and password managers can use

to support the generation of compliant passwords. We hope that our work will signal to

both communities that adopting a PCP language has tangible benefits. For websites, it

allows them to unify their PCP specification and checking, allowing changes to the PCP

file to automatically update how checking happens on both the client and server. For

password managers, it not only improves the usability and utility of password management

but also supports opinionated generation algorithms (e.g., mobile-aware generation [63],

security-focused generation [124]), which would otherwise frequently generate non-compliant

passwords.

While we are encouraged by the positive results of our user study, they also indicated

that there is room for improvements. Future work could expand our PCP language by

identifying and adding support for rarely used PCP features, such as restricting sequences of

characters (e.g., “abcde”) or keyboard patterns (e.g., “qwerty”). Similarly, our language could

be enhanced to allow Unicode characters. Future research could also examine how to allow

our PCP language to handle dynamic strings (e.g., usernames). One potential solution is to

use placeholders in the prohibited_substrings requirement, providing appropriate values

to the library at password validation. Finally, research could explore automatically identifying

PCPs, both in whitebox scenarios, helping web developers identify their website’s PCP, and

blackbox scenarios, helping password managers identify PCPs for websites that do not publish

57

it, with care taken to avoid flooding servers with passwords guesses (approximating a DoS

attack).

58

Chapter 4

Secure Browser Credential Entry

Channel1

Password managers seek to improve the security of passwords by improving the usability of

password generation, storage, and entry [123, 158], with the hope that doing so will encourage

users to generate random passwords and avoid password reuse. Additionally, password

managers allow users to audit the security of their stored passwords, detecting weak, reused,

or compromised passwords. However, recent research has shown that users avoid using these

features, [52, 139, 104, 125], limiting the security benefits of adopting a password manager.

Arising from this state of affairs, we ask the question, is there anything that password

managers can do to increase the security of passwords that does not rely on users to change

their behavior? In this chapter, we start to answer this question by investigating whether

password managers can protect the passwords they autofill from theft. This includes preventing

theft from web trackers [153], cross-site scripting (XSS) attacks [150], malicious browser

extensions [85, 137], or compromised JavaScript libraries [129, 49] (i.e., a supply chain attack).

We start our investigation by exploring the design space for theft-resilient password entry.

We identify five possible designs, evaluating each based on their security and usability. For

security, we consider their ability to prevent theft by phishing, honest-but-curious scripts,
1This chapter is based on my work that is in process of being published. Prepublication paper of this

chapter available at: https://doi.org/10.48550/arXiv.2402.06159

59

malicious scripts (e.g., XSS), and malicious browser extensions. For deployability, we consider

whether these designs require changes to websites, extension APIs, or the browser itself.

Based on our analysis, we identify the following approach as providing the best mixture

of security and deployability: When autofilling a password, the password manager instead

autofills a fake password. It then provides the browser with (a) the fake password, (b) the real

password, and (c) the origin bound to the password. The browser will then examine outgoing

web requests for that web page, looking for the fake password in the web request body. If

found, it replaces the fake password with the real password if and only if the password is

being sent to the appropriate origin (as specified by the password manager). Critically, at

no point is the real password ever contained in the DOM—preventing theft by client-side

scripts—or within the web request bodies as seen by webRequest API—preventing theft by

extensions.2 Additionally, this design does not require modifying user behavior or websites.

To demonstrate the feasibility of this design, we forked and modified the Firefox browser

to implement the above functionality. We also modified BitWarden, an open-source password

manager, to work with our modified Firefox implementation. Importantly, our proof-of-

concept implementation does not require modifying user behavior or websites.

We empirically evaluated the security of our design, demonstrating that it stops password

exfiltration, both by DOM- and extension-based adversaries. Moreover, we describe how to

prevent attacks by adversaries who are aware of this defense and may try to subvert it. We

also evaluate our tool on the 573 sites with login forms from the Alexa Top 1000, showing

that it is compatible with 97% of those sites. For the remaining 3% of websites, it is easy

for the password manager to revert to the existing behavior, preventing any functionality

regression.

We conclude the paper by discussing lessons learned from our design exploration and

implementations. We also describe potential avenues for future research that, similar to our

work, could modify the browser to add first-class support for authentication.

In summary, the contributions of our paper are as follows:
2This design is inspired by the work of Stock and Johns [160]. A comparison to their work is described

later in this paper (§4.1.2).

60

1. Threat model identification and design space exploration. We identify a threat

model for theft-resilient password entry. Using this model we identify five different

approaches, evaluating each based on security and deployability. Several of these

designs are inspired by work from Stock and Johns [160], though we expand on this

work, demonstrating limitations in the original proposal and then showing how those

limitations can be addressed in different ways to create three of the five designs.

2. Proof-of-concept implementation. We create a proof-of-concept implementation

of the design we believe has the best combination of security and deployability. This

includes both a modified version of the Firefox browser and the BitWarden password

manager. While the final code diff is rather straightforward, creating it was not. Doing

so required hundreds of hours of engineering effort and many discussions with Firefox

developers, many of whom initially believed that what we were proposing would require

too much of changes all across the codebase.

3. Real-world evaluation. We conducted empirical evaluations to demonstrate that

our tool did not interrupt normal authentication flows, including authentication to

websites we created and 554 out of 573 websites pulled from the Alexa top 1000 list.

Additionally, we implement proof-of-concept password-theft attacks for malicious client-

side scripts and browser extensions, demonstrating that these attacks worked without

our proof-of-concept implementation but were stopped by our implementation.

4.1 Background

First, we describe the password entry workflow that is being secured in our work. Next,

we compare our work to Stock and John’s work [160] as our work is inspired by theirs. We

then conclude with background on how browsers function, including form submission, the

webRequest API, and browser extension permissions.

4.1.1 Password Entry Workflow

The password entry workflow can be split into the following steps:

61

1. The user visits a web page that has a form with an input element to enter their

password.

2. The user enters their password by (a) manually typing it, (b) autofilling it from their

password manager, or (c) copying and pasting it from their password manager. At this

point, the password is stored within the web page’s DOM.

3. The user submits the form. This causes the browser to process the form and send a

web request to the server that contains the entered password.

4. The password is transferred over the network (preferably using a TLS connection).

5. The server receives and processes the password as it deems appropriate.

Note this flow also applies to account creation, which has the same general process for

entering and transmitting passwords.

4.1.2 Relation to Stock and John’s Work

Our desire to investigate how password managers could be used to strengthen password entry

(as opposed to generation and storage) was motivated by the excellent work of Stock and

Johns [160]. In their paper, Stock and Johns propose having the password manager inject a

random value in place of the password, that will only be replaced with the real password

during network transmission. Design #4, as described in §4.3 is based directly on Stock and

Johns’ proposal, with only a few minor tweaks. As such, it is natural to ask what scientific

contributions this paper makes compared to that paper. Below we summarize the key ways

we extend Stock and Johns’ work:

• We identify and describe the threat model for securing autofilled passwords (§4.2).

• We perform a design space search for solutions to securing autofilled passwords (§4.3).

In this process, we include Stock and John’s proposal, two other approaches we create

inspired by Stock and Johns’ proposal, and two unrelated approaches. We evaluate

and compare each design’s strengths and weaknesses, demonstrating why our proposed

62

Design #5 is more secure and functional than other designs, including that of Stock

and Johns.

• Our Design #5 (§4.3.3) protects against malicious extensions, something not possible

for the design proposed by Stock and Johns. We also evaluate browser extensions found

in Chrome Web Store to demonstrate the feasibility of this threat (§4.1.3). Finally, we

empirically demonstrate that our implementation protects against this threat (§4.5.1).

• Our security evaluation considers how attackers would try to circumvent the proposed

design using a reflection attack and discuss how password managers could mitigate

these risks (§4.5.1). Stock and Johns’ work did not consider how an adversary aware of

the defense could circumvent it.

• Our solution is functional in modern browsers (§4.5.2). In contrast, Stock and Johns’

proposed solution relies on functionality intentionally removed by browser makers.

While our paper might make it seem like the idea to move this functionality deeper

into the browser is obvious, the lack of any such proposals suggests that it may not

be so. Moreover, as we found in our efforts, modifying the browser is challenging for

researchers and practitioners with many potential pitfalls. Thus our implementation,

including the code we created, is beneficial both for other researchers to build upon

and for browser makers to adopt.

4.1.3 Browser Background

Below, we describe how the browser handles the webRequest API and extension permissions.

These are each important parts of our design space exploration and proof-of-concept

implementations.

webRequest API

The webRequest API is a browser extension-only API that lets extensions read, modify, or

cancel web requests and responses. To access this API, extensions register event listeners for

one or more stages of the web request processing lifecycle (see Figure 4.1).

63

Figure 4.1: Web Request API flow [27]

64

In this lifecycle, the onBeforeRequest, onBeforeSendHeaders, and onSendHeaders

events happen before the request is sent and provide access to the request body, allowing

passwords included there to be exfiltrated. The onBeforeRequest and

onBeforeSendHeaders allow extensions to redirect or cancel the request, while the latter

also allows modification of request headers. The remaining stages are focused on what

happens after the request has been submitted and lacking access to the request body is less

important in the context of secure password entry.

Critically, none of these stages allow the request body to be modified. By the time

onBeforeRequest is reached, the form submission process has already created the

FormSubmission object, and the extensions are only provided with a read-only copy of the

data in this object (not the object itself). The reason behind not allowing the request body

to be changed is unknown, but requests to add this functionality have gone unfilled over the

last decade and there is little evidence that it will be added [28, 114]. Interestingly,

functionality allowing the modification of request bodies existed in older browser versions

(e.g., Firefox, Safari, Internet Explorer) but was removed when these browsers migrated the

Chromium model for browser extensions.

While the request body cannot be modified, the response body can be modified in the

onResponseStarted stage. This allows extensions to arbitrarily inject client-side scripts into

the web page. However, this ability to modify response bodies requires additional permissions

(declarativeNetRequest) on top of those required to read the body.

Extension Permissions

There are a couple of limitations on what a malicious browser extension can do. Most

importantly, all extensions are given a unique origin, preventing one extension from accessing

the data or scripts of another extension. As such, the browser’s same origin policy prevents

malicious extensions from directly accessing each others’ data or scripts. The only way for a

malicious extension to gain access to the passwords stored by a password manager is for that

manager to copy those passwords to an origin where the malicious extension has access (i.e.,

the webpage).

65

The second limitation is that for a malicious extension to exfiltrate passwords, they need

to request certain permissions in their manifest file [34]:

• The scripting permission allows the injection of client-side scripts on any web page [31].

• The activeTab permission allows the injection of client-side scripts on the root web

page of the actively focused tab [29].

• The content script attribute injects a specified client-side script into webpages with

a matching origin (wildcards are allowed) [33].

• The declarativeNetRequest permission allows the modification of web response bodies,

which can be used to inject client-side scripts [30].

• The webRequest permission allows reading web request bodies (which can contain

passwords) [32].

For an extension to be granted the permissions listed in its manifest, the user will need to

approve these permissions during installation or when they are first used. However, research

has shown that users struggle to understand these permissions and are likely to grant them

without much consideration [91]. Still, permissions are useful. If an extension is compromised

through a supply chain attack, the attacker will not be able to change the manifest and will

be constrained by the extension’s existing permissions.

To understand the prevalence of these permissions in existing extensions, between August

28, 2022, to September 13, 2022, we collected 101,414 browser extensions from the Chrome

webstore. We then extracted and analyzed their manifest files. We also estimate user counts

based on data fetched from CRXcavator3 (pulled May 03, 2023).

We identified 12,576 extensions that can inject client-side scripts on any web page,

including 55 with at least 500,000 users. We also identified 4,169 extensions that can read

any web request’s body, including 19 with at least 500,000 users. Of these extensions, 1,410

can read any web request’s body but not inject client-side scripts, including 6 with at least

500,000 users.
3https://crxcavator.io/

66

https://crxcavator.io/

4.2 Threat Model

Our threat model focuses on password managers and the exfiltration of users’ passwords

during the password entry workflow. This exfiltration can occur (i) after the password has

been entered and is stored in the web page’s DOM, (ii) as the authentication web request is

processed in the browser, (iii) when the password is transmitted over the network, and (iv)

when the password is received by the server. Since we focus on securing password entry for

password managers, we do not consider the case where the user manually types the password

or how the server handles the password after the server receives it (e.g., whether they store

passwords salted and hashed).

In our threat model, we are concerned with the following adversaries:

1. Honest-but-curious entities (e.g., web trackers [153]). This entity can read the

contents of any DOM element, including the password after it has been entered into

the web page. Unlike the other adversaries, as an honest party, this adversary will not

circumvent defensive measures designed to protect the password.

2. DOM attacker. This adversary has full control of the web page’s DOM, able to read

and modify the DOM at will. They can steal the password if it is ever included in the

web page’s DOM. They can also attempt to trick password managers into autofilling

passwords outside the legitimate login page [157, 160, 123]. However, this adversary’s

capabilities are limited by security primitives built into the browser—they cannot

violate the same origin policy (cannot directly access the password manager’s data)

and do not have access to web requests or responses that the attacker did not generate.

3. Extension attacker. This attacker can read the headers and body of all web requests

and responses, allowing them to steal any passwords in web request bodies (as visible

through the webRequest API). While a malicious extension can also inject a client-side

script, this capability is already covered by the DOM attacker, so when talking about the

extension attacker, we are focused on their ability to read web requests and responses.

4. Man-in-the-middle (MitM) attacker. This is a network attacker who sits between

the user’s device and the server. They can eavesdrop and modify network traffic as it is

67

transmitted between the two. As we evaluate the security of password entry defenses,

we consider two variants of this adversary: one that cannot break TLS-encrypted

communication and one that can (e.g., an attacker who leverages a substitute certificate

attack [130]).

5. Phisher. This adversary has full control of the web page visited by the user and the

server where the password will be sent, being able to steal the password if it is entered

into the web page or transmitted to the server. While this attacker must convince a

user to visit the phishing web page, we assume this is feasible [3]. For simplicity, we

combine compromised websites with phishers as the two attackers have the same

capabilities.

In addition to these adversaries, we are also concerned with a supply chain attacker.

This attacker compromises a library used by a server, a client-side web page, or a browser

extension. At this point, the attacker has the same capabilities as a phisher, DOM attacker,

and MitM attacker, respectively. Thus, we don’t evaluate this adversary separately from

those adversaries. However, we mention them here to emphasize the feasibility of the other

adversaries, as supply chain attacks can put users’ passwords at risk, even if the user exercises

extreme caution (e.g., vetting all links, disabling client-side scripts, or vetting all extensions).

In our threat model, we intentionally consider a wide range of adversaries to better

evaluate the design space for password autofill defenses. However, we consider several threats

as out of scope. First, we consider compromised browsers and operating systems as out of

scope. If these items are compromised, there is no need to steal credentials during the autofill

process, as they can simply be stolen from memory after the password manager decrypts

them.

Second, we do not consider session hijacking attacks. Poor cookie hygiene (e.g., failing to

use HTTPOnly cookies) can allow session theft by any of our identified adversaries. However,

existing defenses can prevent this attack for any adversary, up to and including a malicious

extension (through token-bound cookies [142]).

Even if we exclude malicious extensions that can exfiltrate session cookies (using the

cookie permission), there are still 11,452 extensions that can inject client-side scripts, 3,568

68

that can read requests’ bodies, and 1,294 that can read web requests’ bodies, but not inject

client-side scripts. This indicates that even with this carveout there are a substantial number

of extensions that satisfy our threat model.

Finally, we note that while malicious extensions may appear similar to a compromised

browser, this is far from the case. First, most extensions have limited permissions, limiting the

damage they can do when compromised. Second, even after granting a malicious extension

every possible permission, it is still sandboxed by the same origin policy, meaning it cannot

steal data stored by other extensions (i.e., the password manager). For these reasons, we

believe it is reasonable to consider malicious extensions in scope but compromised browsers

out of scope.

4.3 Design Space Exploration

Based on our threat model, we explored the design space for implementing password entry

defenses in password managers. A review of the password manager and password exfiltration

literature guided this exploration. Repeated discussions within our research group also

informed it. In total, we identify five high-level designs for securing password autofill.

We then evaluate these designs along two axes: security and deployability. For security, we

consider whether these designs could survive attacks by the attackers identified in our threat

model. For deployability, we consider whether these designs avoid changes to websites and

the browser. Avoiding changes to websites is critical, as requiring all websites to adopt new

technology is unlikely to succeed, as can be seen with the lack of adoption for many proposed

authentication technologies [21]. Avoiding changes to the browser is also ideal, though it is

easier to change browsers than all websites. Moreover, we also distinguish between changes

to the browser that affect the UI processes (similar to user-space processes) and those that

affect the core browser process (similar to the kernel process).

A summary of our evaluation is shown in Table 4.1. At the bottom of this table, we

compare the identified designs against existing approaches for security authentication. For

password manager autofill, we note that there is partial protection from phishing attacks as

the manager should not autofill passwords on phishing websites [123, 122]. However, the user

69

Table 4.1: An evaluation of the five designs based on security and deployment. Also includes
an evaluation of 2FA as a comparison point.

Security Deploy

Design P
ro

te
ct

io
n

fr
om

ho
ne

st
-b

ut
-c

ur
io

us
en

ti
ty

P
ro

te
ct

io
n

fr
om

D
O

M
at

ta
ck

er
P

ro
te

ct
io

n
fr

om
ex

te
ns

io
n

at
ta

ck
er

P
ro

te
ct

io
n

fr
om

M
it

M
at

ta
ck

er
P

ro
te

ct
io

n
fr

om
ph

is
he

r

N
o

ch
an

ge
s

to
w

eb
si

te
s

N
o

ch
an

ge
s

to
br

ow
se

rs
1. Zero-knowledge proof #
2. Modified form handling # # # G# G#
3. JS-based nonce injection G# G# # G# G#
4. API-based nonce injection # G# G#
5. Browser-based nonce injection G# #

Current password manager autofill # # # # G#
Two-factor authentication (2FA) # # # # # # #
Phishing-resistant 2FA G# G# G# G# G# # #

 Fully achieves the property
G# Achieves the property with some limitations
Fails to achieve the property

70

can still copy and paste passwords into password into the phishing website. We also compare

against 2FA (discussed at the end of this section) to highlight that moving to 2FA does not

solve this issue as some might assume.

4.3.1 Design #1: Zero-Knowledge Proof

The most secure approach for password authentication is using zero-knowledge proofs (ZKPs),

where the user does not reveal their password to the server. Examples of this approach are

augmented password-authenticated key exchange (PAKE) protocols [172, 81].

In this design, websites add an endpoint supporting authentication using a ZKP. This

endpoint is not a web page, but rather a method by which the password manager could

directly authenticate on the user’s behalf using the password stored in the manager. Once

authentication succeeds, the password manager sets a session cookie for the domain to create

an authenticated session. Notably, the password is never placed in the DOM.

Security evaluation. As the password is never present in the DOM, it cannot be stolen

by attackers that rely on DOM-based exfiltration (honest-but-curious entity, DOM attacker).

Similarly, the zero-knowledge nature of the authentication protocol means that no information

sent over the network can be used to derive the password, preventing this avenue of exfiltration

(extension attacker, MitM attacker). Finally, even if a ZKP is performed with a phisher, they

will gain no knowledge of the password, protecting against phishing attacks.

Deployability evaluation. This design requires all websites to add an endpoint for

conducting authentication using a ZKP, which is likely a non-starter. Note, PAKE-based

ZKP for passwords have existed for decades but have never seen widespread adoption [68]. On

a more positive note, this design could be implemented with existing browser functionality.

4.3.2 Design #2: No-Script Form Attribute

To stop DOM-based exfiltration of passwords, the browser could add support for a new

attribute on forms or input elements (e.g., noscript) that prevents scripts from accessing the

values stored in that form or input element. The password manager would set this attribute

71

on password fields before autofilling the password. At a high level, this approach is similar to

the shadow DOM [115] that shows one view of the DOM to the user and another to scripts

on the page. From the user’s, web page’s, and password manager’s perspective, everything

would work as it always has, except with an extra layer of password protection.

Security evaluation. This approach would protect against an honest-but-curious entity,

as they would not have access to the protected value and would not try to circumvent this

defense. However, this approach provides little to no security for the other attacks. First, a

DOM attacker could simply create look-alike forms, display those over the actual form (either

by removing it or using a higher z-index), and then steal passwords from the unprotected form.

Second, the password is still sent over the wire allowing access by the extension attacker, the

MitM attacker, and the phisher (assuming the user copies and pastes the password).

Deployability evaluation. Adding a form attribute will require modifying the browser’s

DOM code (UI process) but not code that executes in the browser’s core process. As the

manager is responsible for updating forms with this new attribute to form elements, no

changes are needed to websites. However, if the web page relies on scripts to access and

submit the authentication request, as opposed to letting the form do so itself, the web page’s

functionality could break.

4.3.3 Design #3–5: Nonce Injection

Nearly a decade ago, Stock and Johns [160] evaluated the security of password manager

autofill, finding that managers autofilled passwords into malicious websites under many

conditions. At the end of their paper, they proposed a possible solution to this problem:

1. When an autofill operation is triggered, a random placeholder for the password (a

password nonce) is generated.

2. The password nonce is autofilled into the web page.

3. The manager will scan outgoing web requests looking for the password nonce.

72

4. If the password nonce is detected while being transmitted to an origin that matches

the origin for the real password, the manager will replace the nonce with the password.

While the implementation approach proposed by Stock and Johns is not possible (browser

extensions cannot modify web request bodies), the core idea remains sound. Inspired by

Stock and Johns’ proposal, we identified three designs that autofill password nonces to secure

password entry. Each of these approaches has different security and deployability trade-offs,

with Stock and Johns’ proposal aligning with Design #4.

Design #3: JavaScript-Based Nonce Injection

In this design, the password manager will inject a script into the web page when autofilling

the password nonce into the web page. This script has the following responsibilities:

1. If the password form already has an onsubmit method, the script will store this method.

2. Store any existing submit event listeners, then remove all these event listeners from the

form.

3. The script will set the onsubmit method for the form. The new onsubmit() method

will perform the following operations:

(a) Call the stored onsubmit method, if any.

(b) Call any stored submit event listeners.

(c) Replace the password nonce with the actual password as long as the form data

will be submitted to an appropriate origin.

4. Modify the DOM so that it is not possible to replace the new onsubmit method. If

another script attempts to do so, the onsubmit method stored by this script will be

replaced instead.

5. Modify the DOM so that event listeners can neither be added nor removed from the

form, with attempts to do so simply updating the list of event listeners stored by this

script.

73

Items 1–2 and 4–5 are necessary to ensure that no other scripts run after the replacement

of the actual password occurs.

Security evaluation. This design protects against DOM-based exfiltration in so much as

it can ensure that no other scripts can access the DOM after the submission occurs. While

we describe how this could be done, there is no guarantee that this approach will always work.

For example, the browser could change the form submission process, adding new avenues

for scripts to run after the password replacement occurs. In this case, the password might

even leak to an honest-but-curious entity. Alternatively, malicious scripts could look for ways

to prevent the password manager’s script from preventing modifications to the onsubmit

method or event listeners (which run after onsubmit by default). While the manager could

then update the script it injects to handle these, this sort of cat-and-mouse situation is never

ideal. As such, we rate this design as providing limited protection against honest-but-curious

entities and DOM-based attackers.

The real password is still sent in a web request, allowing exfiltration by an extension

attacker (see Figure 4.2). Additionally, a MitM attacker can also steal the password during

transmission. While password managers could only replace passwords if they are going to be

sent over a valid TLS connection, the connection is often not properly implemented [123] and

would not protect against a MitM attacker that can attack TLS connections.

Against a phisher, this design has the same properties as existing password entry using a

password manager—the password will not be autofilled on a phishing website. However, if

the user copies and pastes it, the phisher will still get the password. It is not possible to copy

a password nonce, as the manager will have no way of knowing on which form to register the

replacement of that nonce (though it could try to guess with varying success).

Deployability evaluation. This approach requires no modification of anything but the

password manager. From this perspective, it is the most deployable of all the designs we

identified. Still, like Design #2, this approach could break websites that rely on scripts to

submit the password instead of the form.

74

Password manager Malicious extension DOM onBeforeRequest()

register callback
autofill password

submit password
request details w/ password

standardstandard Login flow

Figure 4.2: Diagram illustrating how an attacker can use an onBeforeRequest callback to
exfiltrate passwords.

75

Design #4: API-Based Nonce Injection

Design #3 can be improved by changing where nonce replacement happens from the beginning

of the form submission process (i.e., in the webpage) to the browser’s internal form submission

process.This approach has several key benefits. First, as it happens outside the web page, no

DOM attacker-controlled scripts can interfere with the process. Second, it will catch all web

requests, not just those created through form submission, providing better support if the

website submits the values using a client-side script.

To implement this functionality, the webRequest API is used. While this API does not

support web request body modification and likely never will (see §4.1.3), it is possible to

achieve the desired functionality at the onBeforeRequest stage. At this stage, the web

request’s body has not yet been created. As such, the browser can be instructed to modify

its internal copy of the form data (not DOM-accessible), replacing the password nonce with

the real password (if the origin is appropriate). Finally, the generated web request body will

contain the user’s password. This design most closely aligns with the design proposed by

Stock and Johns [160].

This design effectively adds the ability to modify web request bodies. Allowing such

modifications could introduce new security and performance issues [28, 114]. Thus, the browser

should control the replacement rather than the password manager (i.e., the extension). Ideally,

the extension would list the following items when requesting a replacement: (i) the password

nonce, (ii) the replacement password, (iii) the origin (scheme, host, port) associated with

the password, (iv) the name of the field that was autofilled with the password nonce.

The browser will search through the key-value pairs in the FormSubmission object, making

the requested substitution if and only if (a) the indicated field’s value matches the password

nonce exactly, (b) the web request will be sent to the indicated origin. Requiring (a) may

lead to some compatibility issues if a script creates a web request using a different field name,

though we didn’t encounter this in our testing (see §4.5). If necessary, this requirement

could be dropped, though it might have unexpected consequences.4 Additionally, because the

replacement happens within the FormSubmission object, proper sanitization and encoding
4We could not identify any security issues that couldn’t already be caused by malicious client-side scripts.

76

of the key-value pairs will occur, preventing the substitution of one value from being later

treated as a different value or multiple values in the request body.

Finally, we note that unlike Design #3, this design allows copying and pasting of password

nonces from the password manager. As the web request API examines all outgoing web

requests, replacement of nonces is still possible. Still, there will need to be functionality

allowing users to copy real passwords if they are to be entered outside of the browser (though

this can be made harder to activate, incentivizing the use of nonces where possible).

Security evaluation. As the replacement of the password nonce happens after any client-

side scripts are allowed to execute and the actual password is never included in the DOM,

neither the honest-but-curious entity nor the DOM attacker can exfiltrate the password from

the DOM. The DOM attacker could change the destination to which form data will be sent,

but this will result in an origin not associated with the password, preventing replacement.

As with Design #3, the actual password is still visible in the web request body, allowing

exfiltration by an extension attacker (see Figure 4.2). Also, a MitM attacker can steal the

password during transmission. Unlike Design #3, this design provides strong protection

against a phisher. Not only will autofill be prevented but even if a password nonce is copied

into the phishing website, it will not be replaced as it will not have the appropriate origin.

Deployability evaluation. This design does not require any changes to websites. It does

require changes to the extension API and the form submission code (both executed in the UI

processes), but not to code that runs in the browser’s core process. It requires changes to the

browser’s content code but not its core code.

Design #5: Browser-Based Nonce Injection

To protect against malicious extensions that can read web request bodies, the replacement

code must execute after web requests are last allowed to see the web request body. Our

investigation determined that this is best achieved by moving the replacement code into

the browser’s networking code. While this has significant implementational challenges (the

77

network code is in a different security domain from where extensions operate), it protects

against malicious extensions.

In this design, password managers register autofilled nonces with the browser. Then,

when the browser’s networking code is about to send the web request to the operating system

for transmission over the network, it first scans for any registered nonces. If it finds them,

it asks the managers for replacement credentials. At this point, replacement happens as it

did in Design #4, with the manager listing the actual password, the origin, and the field,

and the browser only making the changes if all these values match as expected. Note, even

though this replacement happens after the web request body has been formed, modifications

still happen through an object, ensuring proper sanitization and encoding occur.

Security evaluation. As with Design #4, and for the same reasons, Design #5 is impervious

from DOM-based password exfiltration (honest-but-curious entity, DOM attacker). As the

password nonce replacement happens after extensions can view the web request body, this

design protects against malicious extensions. It performs the same as Design #4 and for the

same reasons regarding MitM attacks and phishers.

Deployability evaluation. This design does not require any changes to websites. It

does require changes to the code that executes in the browser’s core process but not to any

code executed in the UI processes. Most standard browsers are built on standard HTML

specifications using WebIDL [169], so deployment into other browsers would be very simple.

4.3.4 Discussion

Examining the five designs, we see that all five designs improve upon the security of the current

password entry process used by password managers. Of these, Design #1 (zero-knowledge

proofs) has the best security. However, its reliance on websites supporting this technique

likely means it is a non-starter.

Looking at the remaining designs, Design #3 stands out as requiring no changes to

websites or the browser. While it has limited security benefits, it still does better than current

practices and is certainly something password managers could explore.

78

However, we find Design #5 to be the most compelling. While it does require modifying

the browser, it comes the closest to zero-knowledge proofs in terms of security, theoretically

preventing credential exfiltration in all cases except against a MitM attacker who can

compromise the security of TLS (a high bar). As such, this is the design we chose to

implement and discuss for the remainder of the paper.

Lastly, we compare these designs against two-factor authentication (2FA) since some may

consider these a solution to the problem of password exfiltration. Two-factor authentication

does not do anything to prevent password exfiltration, only limiting the impact of that

exfiltration [21]. Research has also shown that many 2FA schemes are vulnerable to the

exfiltration of the codes created by the something-you-have factor [48, 161]. While there are

approaches to secure 2FA against phishing of the secondary factor, this still does not address

the issue of password theft. While it does lessen the impact of a stolen password, it does

not remove it, as the stolen password (or a close variant) may be used on other sites. From

a deployability standpoint, 2FA requires more changes than any of our proposed solutions,

suggesting they could see faster and more widespread adoption than 2FA.

4.4 Implementation

We implemented Designs #3–#5 to demonstrate their feasibility and to perform security

evaluations. In this section, we provide the implementation details of Design #5, which we

found to be the most effective solution.

To implement Design #5, we modified Mozilla Firefox 107.0 and the Bitwarden password

manager. We added a write-only onRequestCredentials API to the browser that enables

the password manager to detect the submission of an inserted nonce to the server, replacing

it with the appropriate credential just before the request is sent over the wire and after other

extensions could read the modified request body. A diagram of the modified flow is given in

Figure 4.3.

79

Password manager DOM onBeforeRequest() onRequestCredentials() Internet

register callback
register callback

autofill nonce
submit nonce

request details w/ nonce
request details w/o the request body

[fieldName: <nonce, password>]
request w/ password

Browser-Based Nonce InjectionBrowser-Based Nonce Injection Login flow

Figure 4.3: This diagram gives the flow for autofilling and replacing nonces as implemented
by Design #5.

80

4.4.1 Getting Setup

First, the password manager will register two callbacks, one for onBeforeRequest and one

for the new onRequestCredential. While we could have collapsed the functionality of both

of these callbacks into onRequestCredential, doing so would have required a larger change

for how callbacks are handled in the webRequest API. As this could lead to unintended

regressions, we decided on the approach that changed fewer lines of code in the browser, even

if it led to a few more lines of code in the password manager implementations.

Next, as needed, the password manager will autofill a nonce in place of a password. After

doing so, it will internally store an association between the web page and (i) the nonce, and

(ii) the name of the field storing the nonce, and (iii) the password manager entry that is

being autofilled

4.4.2 onBeforeRequest

Eventually, the page will be submitted and a webRequest will be created by the browser,

with this webRequest containing the autofilled nonce. This will cause the callback registered

with onBeforeRequest to be triggered. Within this callback, the password manager will be

able to see the details of the webRequest, including the destination URL, the HTTP method

used, and the request body. Using this information, the password manager determines if (a)

there is a nonce associated with the web page that generated the webRequest, (b) the nonce

is in the request body, and (c) replacing the nonce would be safe. If all these checks pass, the

password manager will internally store an association between the webRequest and (i) the

nonce, and (ii) the name of the field storing the nonce, and (iii) the password manager entry

that is being autofilled

Based on recommendations from the research literature [160, 102, 157, 123, 122] and to

prevent a reflection attack discussed in §4.5.1, we recommend that password managers make

the following safety checks:

1. Check that the web page is not displayed in an iFrame.

2. Check that the submission channel does not use HTTP or an insecure HTTPS

connection.

81

3. Check that the origin (protocol, domain, port) matches the origin identified by the

password manager entry being autofilled. Even better, the password manager can store

the exact URL where credentials should be submitted, only submitting passwords to

that URL.5

4. Check that the nonce is not in the GET parameters.

5. Check that the name of the field storing the nonce remains unchanged since the nonce

was autofilled there (which itself should have been checked before autofilling [123, 122]).

4.4.3 onRequestCredential

Immediately before sending the webRequest over the wire, the callback registered with

onRequestCredential will be triggered. This callback once again receives request details

as input, though in this case the request body has been stripped out. This is necessary

to prevent extensions from reading any nonce substitutions that might have been made by

other onRequestCredential callbacks. In this step, if the password manager has a nonce

associated with the current webRequest, it will simply return the associated nonce, password,

field storing the nonce, and the URL that the password manager expects the password to be

submitted to.

The password manager will then take this information and use it to locate and replace the

nonce in the request body. To prevent unintended (or malicious) consequences from replacing

the nonce, the browser will only make this substitution if,

i) The field name storing the nonce exactly matches the field name specified by the

password manager.

ii) The field value exactly matches the nonce with no additional characters.

iii) The submission URL matches the origin (protocol, domain, port) of the URL provided

by the password manager.
5Determining the exact URL could be done by having password managers store associations for popular

websites, storing prior successful submission locations, or crowdsourcing the creation of associations.

82

While the password manager should have already checked these items before submitting

the password to be replaced, we have the browser also check these items to ensure that they

will be checked. This is an important form of defense in depth [122]. If any of these checks

fail, no substitution is made, and the request will be sent still containing the nonce.

4.5 Evaluations

We evaluated our implementations of Designs #3, #4, and #5 in terms of security. For

Design #5, we also implemented it in terms of functionality and overhead.

4.5.1 Security Evaluation

To evaluate the security of our implementations, we first created a basic PHP login page that

takes in a username and password as form input and logs the credentials in plaintext for

verification purposes. To test this web page, we would autofill with the password and then

submit the web page.

To simulate a DOM-based attack, we injected JavaScript on the test web page that scrapes

the password field before page submission. For this attacker, all three designs prevented the

script from accessing the password. However, Design #3 only succeeded at stopping this

attack because we simulated an attacker who was unaware of the defense. By simulating an

attacker aware of Defense #3, it is trivial to steal the password.

To simulate a malicious extension, we built and installed a browser extension that logs all

outgoing requests using the onBeforeRequest web extension API. For both Designs #3 and

#4, the password was successfully stolen. On the other hand, Design #5 was successful in

preventing password exfiltration, with only the nonces being exfiltrated. This is true even if

we allowed the attack to register a onReplaceCredential callback (which has no access to

the request body).

To further verify our results, we conducted these same tests on the login pages for the

top 10 Alexa websites. In each case, our results were the same as our initial test.

83

Reflection Attack

An attacker who is aware of Defense #5 could attempt to conduct a reflection attack, wherein

they attempt to trick the browser into submitting the real password to a web page that

displays those values to the user. For example, the attacker could change the field name for

the password to “username” for web pages where an error is displayed when the username

doesn’t exist (e.g., “${username} doesn’t exist”). Alternatively, the attacker can also modify

the submission URL to point to a page where it is more likely that request body values will

be reflected on the web page.

In each of these cases, the attacker is relying on the password manager and the browser

to approve the replacement of the nonce even though the password will be sent to an unsafe

location. To address this attack, our implementation requires the password manager to (i)

specify the origin associated with the password and (ii) identify the field storing the nonce.

If either of these values does not match, the nonce will not be replaced with the password.

For even better security, the password manager can store and check the exact URL and

field name that should be used to submit the password. This completely foils this reflection

attack. As several password managers are already checking these items before autofilling

passwords [123], we believe it would be reasonable for them to implement these checks.

4.5.2 Functional Evaluation

To evaluate the functionality of our browser-based nonce injection implementation, we

conducted tests on real websites to ensure that our implementation does not break their

authentication flows.

Using the Alexa top 1000 sites from May 1, 2022, we ran a Selenium script that started

at the root page of each domain and traversed all links on the page up to a maximum depth

of three, search for login pages. In total, we identified login pages on 623 sites. After filtering

for the subdomains of the same website, like Google and Amazon for different countries, we

were left with 573 unique login pages.

For all 573 login pages, we used a Selenium script to submit credentials from both an

unmodified Firefox browser and from a modified version of Firefox implementing Design

84

#5. As illustrated in Figure 4.4, we set up a proxy server to record all the outgoing web

requests from the browsers and save the request body. We then compared the credentials in

the authentication requests sent from both browsers.

In 554 of 573 cases (97%), there was no difference in the credentials submitted to the

websites. 11 sites (2%) generated an integrity check value based on the autofilled nonce. In

these cases, the nonce would still be replaced by the real password, but the integrity check

value would no longer match. While we did not confirm that this would cause the login to

fail (we didn’t have actual accounts on these sites), we still consider these as failed cases.

Finally, 7 websites (1%) either hashed or base-64 encoded the nonce, which prevented the

password manager from replacing it with the real password.

While 100% compatibility would be ideal, being able to improve the security of 97% is still

a significant step forward. In practice, password managers could keep a list of websites that

don’t support secure autofill and not use it for those websites, preventing any functionality

regressions. Moreover, as our testing shows, identifying non-compliant websites can be fully

automated, making the creation of such a list highly reasonable. Additionally, if our solution

was adopted, we would hope websites would abandon their ad hoc attempts at secure password

entry in favor of the more robust security offered by our secure password autofill system.

4.5.3 Overhead Evaluation

To measure the overhead incurred by our implementation, we examined the logs for

HttpBaseChannel [116] generated during our functional evaluation of our modified browser.

These logs give exact measurements for each stage of the webReuqest lifecycle, allowing us

to pinpoint the processing time used by our code.

On average, the webRequest lifetime was 4.5222 seconds, with our code accounting for

0.443 seconds, representing 10.6% of the total request duration. This overhead can entirely

be explained by the time needed to destroy and recreate the request stream’s body when

replacing the nonce with the passwords. In other words, there is no meaningful overhead

when nonce replacement is not needed. As such, when a password has not been autofilled

(the vast majority of cases) there is no meaningful difference in the time taken to submit a

webRequest.

85

Log Request

Proxy
Server

Internet

Unmodified Browser

Modifier Browser

Figure 4.4: Functional Evaluation Architecture

86

4.6 Discussion

Below we discuss implications and limitations related to our design and implementation.

4.6.1 Deployment and Adoption

We worked with Mozilla Firefox developers for implementation details on our design ideas.

With the future goal of merging the feature into Mozilla Firefox, we have made careful

consideration for changes made in the code to be within acceptable standards for the Firefox

repository, getting it reviewed with the developers wherever necessary. We hope that this

will speed deployment of our design.

It is also important to consider that users often reject security advice if they perceive

the effort required to implement it outweighs the extra security gained [73]. Our proposed

defenses for improving the credential entry workflow do not require any changes to the login

user experience, which may increase the likelihood of adopting these protocols. Additionally,

our design only requires small changes to password managers and web browsers, which could

be easier to deploy given that both entities have an interest in increasing users’ security.

4.6.2 Securing Manual Password Entry

Protecting manual password entry is challenging, particularly as an attacker can inject

client-side scripts (honest-but-curious entity, DOM attacker) that listen and record keystrokes

(i.e., a key logger). One possible way to secure manual password entry would be to allow the

browser to enter a special password entry mode using a conditioned-safe ceremony [87]. In

this mode, the browser would record the user’s keystrokes, replacing each stroke with one

or more random password nonce characters. The browser would also prevent any scripts or

extensions from recording keystrokes while the password entry mode is active. After the user

finishes entering the password, they would leave the password entry mode.

While this approach could protect manually entered passwords, research would be needed

to make sure it works in practice. First, care will need to be taken in selecting the conditioned

safe ceremony to ensure that users always enable it when needed. Second, it will be necessary

to design the password entry mode such that it is clear when it is activated [45]. Third,

87

research would be needed to explore how users could be made aware of and encouraged to

use this functionality. Lastly, user studies would be needed to ensure that it has sufficiently

high usability to encourage users to make use of this functionality.

4.6.3 Denial of Service for Nonce Injection

An attacker could detect nonces entered onto a web page’s DOM and modify them. This

would cause the authentication flow to fail, as the original nonce would no longer exist and

the real password would never be substituted. After repeated failed authentication attempts,

a user may assume that there is something wrong with their password manager and manually

enter their password, opening their password up to exfiltration. It is important to note that

this is not additional behavior due to our solution as extensions already have the capability

to alter DOM input. Future work could explore this issue to measure user behavior when

encountering a DoS attack and explore potential solutions to mitigate its impact.

4.6.4 User Confusion

User confusion is a potential issue with nonce injection defenses. If users view the autofilled

password, they may realize it is not their password, especially if they don’t use a generated

password. This could lead to confusion. Although this issue may not be that prevalent

because users are less likely to investigate passwords inserted through a password manager, it

is still prudent to study the behavior of users when they encounter such confusion.

While the shadow DOM is not sufficiently secure to be used to show users their actual

password [148], the browser could add a similar utility to securely display the real password

to the user, without allowing that password to be accessed by malicious client-side scripts or

extensions. Future research could also investigate this potential solution.

4.7 Conclusion

There are many avenues for adversaries to exfiltrate passwords: through client-side scripts,

the webRequest API, during network transmission, and through phishing. In this paper, we

88

explore how the password manager can take an active role in protecting passwords from theft.

To this end, we identify a strong threat model for password exfiltration. We recommend that

future work on this topic also consider a threat model at least this strong.

Based on this threat model we conduct a design space exploration, and identify five

potential methods that password managers can use to secure password entry. Of these, the

most secure design involves having password managers authenticate directly with websites

using a zero-knowledge proof. While we do not pursue this implementation further in this

paper, we still think it is compelling, and recommend that password managers work with

websites to further explore this design.

Instead, we settle on a design based on password nonce injection. This design does

not require modifying websites but still provides most of the security benefits of using a

zero-knowledge proof. Critically, this design requires no change in user behavior or awareness.

We believe that both of these properties are necessary to promote the possibility of adoption.

To verify that this design is feasible, we implemented it in Firefox and BitWarden. We

then conduct security and functionality evaluations of our prototypes, demonstrating that

they can stop credential exfiltration by malicious client-side scripts and browser extensions.

We also demonstrate that it works with 97% of the Alexa top 1000 websites.

While not perfect, our implementation is working, publicly available code that can already

improve the security of autofill on the vast majority of websites. For the remaining websites,

it is easy to automatically detect compatibility issues and not use our secure autofill API,

preventing any functionality regressions. As such, our work not only pushes forward our

scientific understanding of this area but makes an important practical contribution.

89

Chapter 5

Securing FIDO2 Credential Entry1

It is well established that passwords are a weak form of authentication, as users typically

choose weak passwords, reuse passwords across multiple accounts, and fall victim to phishing

attacks. To address these issues, the concept of multi-factor authentication (MFA) has been

proposed as a more secure addition to password-only authentication. These MFA systems

typically require users to provide two or more forms of authentication, such as something

they know (e.g., a password), something they have (e.g., a smartphone), and something they

are (e.g., a fingerprint). To address the issues of password security, two-factor authentication

(2FA) and passwordless authentication have been proposed as more secure alternatives to

passwords.

The state-of-the-art for two-factor and passwordless authentication on the Web is FIDO2,

the FIDO (Fast Identity Online) Alliance and the W3C’s newest set of specifications

supporting two-factor authentication (2FA), multi-factor authentication (MFA), and

passwordless authentication. FIDO2 provides a standard web services API (WebAuthn) on

client machines to authenticate users using public-key cryptography. The API is available in

all popular browsers and is experiencing increased adoption by major service providers,

including Facebook, GitHub, and Gmail.

The FIDO2 design thwarts remote attackers. It assumes a trusted client (browser and

OS) and defends against account compromise due to stolen passwords and phishing attacks.
1This chapter is part of a broader research project conducted in collaboration with researchers at Brigham

Young University. Content here only includes aspects of the project in which I was directly involved.

90

Prior research has shown the FIDO2 protocol is vulnerable to local attacks, such as an

authenticator rebinding attack, synchronized login, and protocol downgrade attack [64,

77, 173]. Vulnerabilities to local attacks are unsurprising given the FIDO2 threat model

assumes a trusted client and TLS for network communication. The protocol does not provide

confidentiality and integrity. The data is not encrypted and can be read and modified by the

client and a network eavesdropper.

Local attacks against FIDO2 can originate from (1) cross-site scripting (XSS), (2) a

malicious browser extension, (3) a compromised browser, and (4) a compromised operating

system. In this chapter, we focus on the first two attack vectors, as they have a lower barrier

to entry compared to compromising a browser or operating system for root access. Our

defense, secure browser channel FIDO2 (sbc-FIDO2), fortifies against such attackers with a

modest deployment cost that requires changes solely within existing browsers, plus minimal

changes to web servers, consisting of just 2-3 lines of code. We implement a proof-of-concept

prototype for sbc-FIDO2 in Mozilla Firefox, showing the ease the defense can be implemented

in a real-world browser. We discuss the security and deployability properties of the design,

showing that it is effective against local attacks and has a low deployment cost. We then

discuss how our defense can be extended to encompass additional browser APIs that facilitate

the transmission of sensitive data to servers, such as the Clipboard API.

5.1 Secure Browser Channel - sbc-FIDO2

In this section, we first describe an adversary model and the security properties necessary to

defend against this adversary. Next, we present the design and analysis of a defense against

the adversary. Finally, we describe our implementation of the defense.

5.1.1 Adversary model: A

Adversary A represents a malicious browser extension or malicious JavaScript injected into

the victim’s browser through XSS.

The adversary has two primary goals:

91

Goal 1: To execute a short-term attack on the victim’s account, leading to long-term

access from the attacker’s device. The adversary wants to impersonate Bob from their device

over an extended period without detection after executing a short-duration one-time attack

from Bob’s device or another device that Bob uses just once. By relying on a single malicious

code execution from Bob’s device, A’s continued dependence on an extension’s malicious code

to access Bob’s accounts decreases, thus lowering the chances of detection. Many malicious

extensions are removed from browsers after researchers detect them. A short-lived attack

may remain undetected and persist after the extension is removed. The adversary cannot

achieve its goal by registering OAuth tokens, stealing session cookies, or monitoring all user

communication. Many websites do not use OAuth access tokens (e.g., banking), and the

tokens last only for several hours to a couple of weeks. Furthermore, cookie-based login

sessions expire as soon as a user logs out. Therefore, if the attacker wants long-term access,

they have to steal cookies frequently, which is infeasible if the victim only logs in once from a

vulnerable browser.

Goal 2: To log into a victim’s account even when the victim does not log into that account.

These two goals cover all local attacks described by [173] except the attack on the clone

detection algorithm.

We do not consider adversaries that try to trick the user into submitting credentials to

them using social engineering attacks.

How A can execute attacks on FIDO2? Within the browser, a malicious extension

can leverage web extension APIs, granting it the capability to read from and write to

the current page as well as network requests. This capability encompasses two specific

functionalities: (1) overriding browser-provided methods with malicious alternatives and (2)

accessing and modifying the request/response header and body. When it comes to intercepting

and modifying FIDO2 requests or responses, a browser extension utilizes one of the following

techniques:

JS injection: A browser extension can insert malicious JavaScript code in the target

webpage to replace the FIDO2 request/response or redirect it to an attacker-controlled

authenticator. One way to achieve this is by overriding the built-in credentials.create

92

and credential.get APIs. Whenever the webpage registers or authenticates, it calls the

attacker’s functions instead. The attacker can set up a virtual authenticator to register their

authenticator instead of the user’s [64]. Malicious attackers can also execute this attack by

leveraging XSS without a browser extension.

Network Request/Response Interception: A browser extension can use the WebRequest

API [112] to intercept network requests or responses. The WebRequest API allows browser

extensions to intercept and read the HTTP request at various stages of an HTTP request life

cycle.

Feasibility To demonstrate the feasibility of Adversary A compromising a webAuthn client,

we built a prototype of a malicious Chrome extension to read and modify FIDO2 requests

and responses using the above techniques. In our Chrome extension, content_script allowed

us to obtain details and change the web page’s DOM a user visits. We replace Chrome’s web

API function navigator.credentials.create with our custom handler on every webpage. Our

custom handler modifies/replaces the original FIDO2 request or response with a malicious

one.

There are many instances of malicious browser extensions used by millions of users

on official Chrome/Firefox extension stores. A few recent examples are: (1) in 2020, 500

Chrome browser extensions were discovered secretly uploading private browsing data to

attacker-controlled servers and redirecting victims to malware-laced websites[131], (2) Awake

discovered 111 malicious Chrome extensions that were downloaded over 32 million times [15].

These extensions can take screenshots, read the clipboard, harvest credential tokens stored

in cookies or parameters, grab user keystrokes (like passwords), etc., and (3) in 2021, Cato

identified 87 out of 551 unique Chrome extensions on customer networks as malicious [24].

Similar to Kaprevelos et at. [85], we look into chrome extensions in the wild to show

the feasibility of malicious extensions. We analyzed the permissions requested for 163,699

Chrome extensions, extracted by CRXcavator [50] from the Chrome web store on Jan 21st,

2021. We found that 35,211 Chrome extensions have one of these permissions that allow them

to run on all websites: < all_urls >, https : // ∗ /∗, or ∗ : // ∗ /∗. These extensions can use

content_script and interact with any webpage’s DOM, which allows them to execute a MITM

93

attack by overriding webAuthn client APIs. 18,943 extensions have webRequestBlocking

permission, which is enough to intercept and read FIDO2 request or repsonse. Table 5.1

shows the distribution of users among these extensions. There are hundreds of extensions

with more than millions of users. A malicious actor only has to compromise one of these

extensions to be in a position to launch an attack on over a million users.

Security properties to mitigate local attacks: Based on the adversary’s goals and

local attacks described in previous research we present three properties and how the lack of

these properties leads to various local attacks. We aim to achieve these security properties

for our defenses to defend against A.

1. Confidentiality: A can compromise a user’s privacy by intercepting and reading the

FIDO2 request/response, thereby gaining access to sensitive information such as the

counter value [64] and FIDO2 extension details.

2. Integrity: A can manipulate the FIDO2 registration request/response to launch an

authenticator rebinding attack or an algorithm downgrade attack [77, 64, 173]. The

latter can be particularly concerning in the post-quantum computing era, as many

authenticators may not support post-quantum cryptography. Consequently, servers

would need to support conventional legacy cryptography. Adversaries can downgrade

the signing algorithm to a weak one, potentially exploiting it at a later stage.

3. Session Accountability: The authenticator signs the challenge with the private key

associated with a user’s account during authentication. However, when a user taps the

hardware security key (HSK) (or enters PIN on a PIN based HSK), users cannot verify

for which account they are authenticating. As a result, an adversary can clandestinely

authenticate to one of the victim’s accounts in the background without their knowledge.

This attack is known as a synchronized login attack [173].

Table 4.1 shows the status of the security properties in the current FIDO2 implementation.

A poses a threat to both confidentiality and integrity within the context of the FIDO2

protocol. However, session accountability remains intact to some extent as the browser

94

Table 5.1: Browser Extensions by Number of Users

Permissions
Users # Extensions webRequestBlocking All URLs

1-10000 163699 18943 35211
10000-50000 5506 1017 1480
50000-100000 2379 543 821
100000-500000 1177 354 497
500000-1000000 631 144 290
>1000000 254 127 153

95

ensures transparency by displaying the domain name on a popup before the user’s approval

on the HSK , as shown in Fig 5.1. In addition, the browser controls the webAuthn client,

preventing A from accessing it directly. Consequently, authentication requests are channeled

through the browser, and A cannot manipulate the popup displayed to users. However, since

browsers do not display a username, this allows A to log in to another account without the

user’s knowledge if an HSK has multiple accounts for the same RP .

5.1.2 Design: sbc-FIDO2

This section presents the design of a secure in-browser communication channel, sbc-FIDO2 ,

that defends against A.

Session Accountability: To ensure session accountability for each unique combination

of username and authentication request, browsers should add the username to the popup

notification shown in Figure 5.1 to inform users of the account they are authenticating to.

Displaying the username during authentication may help users detect an unauthorized login

request.

Confidentiality & Integrity: This design addresses the security concern related to the

potential interception and modification of FIDO2 requests and responses by malicious

browser extensions. This design requires an RP to send a dummy FIDO2

registration/authentication request within the payload while the original request is

transmitted in the header webauthn_req. Additionally, the RP sends a header URL_resp

containing the complete URL to which the FIDO2 response will be directed. The browser

intercepts the genuine FIDO2 request at the earliest possible stage within its networking

module, stores it in secure storage, and removes the FIDO2 header. Meanwhile, the dummy

request within the payload proceeds through the standard flow where browser extensions can

access it. Simultaneously, the genuine FIDO2 request remains confidential and intact in

secure storage until it is retrieved through the webAuthn API at the end of the flow.

Consequently, this design effectively safeguards the FIDO2 request from exposure against the

DOM.

Similarly, the FIDO2 response from the authenticator is intercepted within the browser’s

webAuthn API, placed in secure storage, and substituted with a dummy response. Finally,

96

Figure 5.1: Chrome browser popup for FIDO2 authentication initiated on localhost.

97

the browser’s networking code inserts the original FIDO2 response in the webauthn_

resp header in the reply before transmitting it over the network.

When the browser receives webauthn_req and URL_resp, it starts monitoring all the

outgoing web requests’ URLs for 120 sec, which is the maximum recommended timeout for

which the caller is willing to wait for the call to complete according to the FIDO2 specification.

If the browser detects an outgoing request to URL_resp, it appends the webauthn_resp

header to the original FIDO2 response.

To accomplish the secure storage, we utilize the singleton design pattern, which facilitates

the secure storage and redirection of FIDO2 requests and responses away from browser

extensions. The flow of request/response through the secure storage can be seen in Figure 5.2.

The singleton pattern restricts the instantiation of a class to a single instance within a given

process. In our design, the singleton class acts as a container for requests and responses,

which are stored during the early stage of the flow and later injected back into the flow at

the final stage. This design simplifies access to the stored variables, as the singleton file is

readily available anytime during the flow.

The use of the singleton pattern has been subject to debate among software developers

due to its potential as a global class. However, in our specific implementation, a global class

is necessary to establish a direct and efficient path for securely transferring requests and

responses from the beginning to the end of a flow. Moreover, the singleton file serves as a

global object, eliminating the need to pass object references between different objects and

reducing the risk of coding errors.

The RP employs dummy FIDO requests or responses to identify any malicious JavaScript

or browser extensions that attempt to tamper with FIDO2 communication or leakage of

sensitive data. If the RP receives a FIDO2 response corresponding to the dummy FIDO2

request in the payload, the RP will consider it an attack and can warn users. If a FIDO2

extension communicates sensitive data and the RP receives the dummy sensitive data in the

future, the RP will identify it as an attack and inform the user. Furthermore, the RPs can

notify browsers when they detect an attack to allow browsers to capture the current state of

the Document Object Model (DOM) and browser extensions for profiling purposes.

98

Figure 5.2: sbc-FIDO2

99

There are two ways to generate dummy requests or responses, each serving different

objectives. First, create a valid FIDO2 request with randomly generated fields. This method

prioritizes maximum confidentiality by ensuring no correlation between the dummy and

original requests/responses. However, this approach signals potential attackers that the

request is not genuine, thus dissuading them from executing an attack that risks detection by

attack profiling.

Second, duplicate the original request and substitute all parameters with random values

that conform to the specific constraints outlined in the FIDO2 specification. These random

values must also match the length of the original values. Furthermore, any values already

present in the Document Object Model (DOM), such as the username in the context of

two-factor authentication (2FA), should retain their original values within the dummy

request. This strategy may deceive potential attackers into believing the dummy request is a

genuine FIDO2 request and replacing it with their attack request. This approach increases

the likelihood of successful attack profiling, allowing for more comprehensive analysis and

notifying the user regarding the threat.

5.1.3 Security and Deployability Analysis

In sbc-FIDO2 , the flow of the original FIDO2 request or response bypasses the domain of

the Document Object Model (DOM) and any accessible parts of the networking module

that malicious browser extensions could exploit. Furthermore, the secure channel established

through the singleton class operates exclusively within the privileged environment of the

browser, with no exposed API accessible to browser extensions. This design prevents any

unauthorized access or tampering by malicious browser extensions.

Deployability: sbc-FIDO2 introduces modifications to the browser architecture to establish

a secure channel within the browser environment. Our sbc-FIDO2 design necessitates the

inclusion of an additional header in the FIDO2 web request and response, which could be

updated by only changing one line of code as described in Section 5.1.4. The transmission

of FIDO2 requests and responses through headers allows the browser to remove the FIDO2

request earlier and add the FIDO2 response later in the flow compared to the HTTP body.

Future research can explore alternative approaches that involve the browser scanning incoming

100

requests for designated keywords associated with FIDO2 requests and triggering the secure

channel process accordingly. However, for long-term implementation, we recommend adopting

the headers approach due to its minimal overhead and the flexibility it offers servers, granting

them the ability to permit extensions to intercept requests if required for specific purposes.

This option to allow interception may prove particularly advantageous for applications beyond

the scope of FIDO2, into other applications supported by the web browser such as Clipboad,

File System, and Geolocation APIs.

5.1.4 Implementation

We modified the Firefox browser nightly version 104.0a1 to demonstrate the feasibility of

sbc-FIDO2 . The modified Firefox implementation was tested on Windows 10 and 11.

To safeguard FIDO2 requests/responses from interference by browser extensions, it is

imperative to safeguard the FIDO2 request before the onHeaderReceived event and the FIDO2

response before the onBeforeRequest event. Implementing these measures guarantees that

the FIDO2 requests/responses remain inaccessible to DOM and browser extension’s Web

request interception capabilities.

Figure 5.3 illustrates the standard and modified Firefox flows for FIDO2 requests and

responses. When the relying party (RP) sends an original FIDO2 request, it is transmitted

through an HTTP header field named webauthn_req along with URL_resp. In the modified

Firefox, the browser examines every incoming server response in the nsHttpChannel, which is

the earliest point of entry for HTTP packets in Firefox. Upon detecting a header containing

the webauthn_req field, the browser retrieves the values of webauthn_req and URL_resp,

passes them to the singleton file, and subsequently removes them from the header. The

dummy request in the payload undergoes the standard flow, where browser extensions can

interact with it. The WebAuthnTransactionParent retrieves the original FIDO2 request from

the singleton file, creates a WebAuthnMakeCredentialInfo object, and transmits it to the

authenticator through the WebAuthnManager’s register function. The user interacts with

the security token, and the authenticator returns the FIDO2 response. The original FIDO2

response is stored in the singleton file by the WebAuthnTransactionParent, while a dummy

FIDO2 response is provided to the DOM. When the nsHttpChannel detects an outgoing web

101

User HSK WebAuthnTransactionParent DOM nsHttpChannel RP

initiates FIDO2 reg or auth
requests FIDO2 reg or auth req

FIDO reqFIDO reqFIDO reqFIDO req
FIDO resp FIDO resp FIDO resp FIDO resp

standardstandard Registration/Login flow

initiates FIDO2 reg or auth
Requests FIDO2 reg or auth req

dummy FIDO req, Header: webauthnreq, URLresp

store_singleton(dummy req, orig req)

dummy FIDO2 req
dummy FIDO req

retrieve_singleton_req(dummy FIDO2 req)

FIDO req
FIDO resp

store_singleton(dummy FIDO2 res, FIDO2 res)

dummy FIDO resp
dummy FIDO resp

retrieve_singleton_res(dummy FIDO2 res)

dummy FIDO resp, Header: webauthnres = FIDO2res

sbc-FIDO2sbc-FIDO2 Registration/Login flow

Figure 5.3: sbc-FIDO2 sequence diagram

102

request to URL_resp, it retrieves the original FIDO response and adds it to the outgoing

request’s header.

To validate our implementation, we employed a Java-based WebAuthn Demo Server [176].

To enable our server we modified the server by replacing the line

Response.ok(json).build(); with

Response.ok(json_dummy).header("webauthn_req", json)

.header("URL_resp", url).build();. To assess the effectiveness of our implementation

and the feasibility of the sbc-FIDO2 design, we installed the malicious browser extension

developed as described in Section 5.1.1. Subsequently, we performed registration and

authentication processes, wherein the malicious browser extension failed to read or modify

FIDO2 requests or responses, thereby confirming the effectiveness of our implementation.

5.2 Discussion

Although these mitigations address attacks outside the initial threat model of FIDO2, they

may become more consequential with the move to passwordless authentication. Instead

of attackers needing to compromise a password and a second factor, attackers can now

compromise accounts by compromising a single, stronger authentication factor. High-value

targets may be susceptible to motivated attackers that pursue attack vectors outside the

scope of the initial FIDO2 design.

5.2.1 Effectiveness of Defenses

XSS and malicious browser extensions (A) pose substantial threats in the present landscape,

demanding the implementation of robust defenses to counteract their potential harm. The

masses can adopt our sbc-FIDO2 defense to protect against adversary A to secure themselves

with relatively less overhead. It is important to highlight that the defenses we propose only

safeguard against attacks directed at FIDO2 and other additional precautions and mitigations

should be taken to protect against other potential threats. For instance, users along with

our sbc-FIDO2 should refrain from granting cookie permissions to untrusted extensions, and

RPs should utilize HttpOnly cookies to prevent malicious JavaScript from accessing cookies.

103

5.2.2 Deployment

The sbc-FIDO2 significantly enhances FIDO2 security against XSS and malicious browser

extensions with minimal effort. This design maintains the same user experience while

introducing a slight increase in cognitive load through the addition of the username in the

browser’s popup before authentication on the HSK . Deploying this defense is relatively

straightforward, involving major changes in the browser and minor modifications, as little as

two lines of code, for RP entities. Updating third-party FIDO2 libraries used by most RP

entities can often suffice for deployment. However, it is crucial for these libraries to provide

RP entities with the flexibility to enable/disable this feature. Overall, this minimal impact

on usability and easier deployability enables widespread adoption of this defense mechanism.

Other designs utilizing TEEs can be utilized by high-value targets to protect against

more sophisticated attacks, such as compromised browser, operating system, and hardware

components as in the case of malware and other malicious agents. But the compromise is

that these designs require significant changes to the browser, RP , and HSK , making them

less deployable.

5.3 Conclusion

In this chapter, we presented a defence against local attacks on FIDO2 that utilizes the

Secure Browser Channel (SBC) concept. We identified the threat model for local attacks on

FIDO2 and explored the design space for SBC-based defences. We implemented a proof of

concept of the SBC-based defence in the Firefox browser and evaluated its proper functioning.

Even though the local attacks on FIDO2 are not as prevalent as remote attacks, they are

still a significant threat and should be addressed before they become more common.

104

Chapter 6

Detecting and Auditing Password Theft

Even with the assistance of password managers, vulnerabilities persist, leaving user

credentials exposed to threats such as Cross-Site Scripting (XSS) attacks [150] and malicious

browser extensions [85, 137]. XSS attacks are particularly dangerous due to their capacity to

compromise large groups of users, while malicious extensions pose a threat through their

ability to conduct extended and stealthy information theft. The frequent and evolving nature

of these security threats highlights their importance in today’s cybersecurity landscape.

OWASP recognizes XSS attacks as one of the top 10 most exploited vulnerabilities on

the web [132]. The realm of cross-site scripting attacks and their mitigation is a subject

of extensive research [147, 159, 160, 96, 10, 67, 89]. Past studies have identified malicious

extensions as a significant threat to credential security [173]. Even if users only install

reputable web extensions, compromised libraries, such as those in supply chain attacks, can

still turn an extension into a malicious tool [129, 49]. Additionally, there have been other

instances where benign extensions turned malicious either due to the creators, by compromise

of code, or by sale to malicious agents [72, 22, 11, 36].

These attacks can lead to various types of damage, ranging from ransomware installation

and user surveillance to credential theft. The implications in the case of credential theft

are especially grave, often resulting in the loss of accounts. This can lead to financial harm

when financial accounts are compromised and substantial privacy violations for other types

of accounts. The risk becomes particularly critical in situations where account privacy is

105

paramount, such as for journalists operating in authoritarian states, where the repercussions

of such breaches can be extremely severe.

Effective detection of these attacks is crucial in preventing the loss of user accounts.

For administrators, the mass leakage of user credentials results in considerable time and

financial burdens in addressing such security breaches. Timely detection can substantially

lessen the impact on both users and server administrators by either preventing or mitigating

the damage. From an attacker’s standpoint, the likelihood of their attacks being detected,

and the potential exposure of their methods, act as significant deterrents. This not only

disrupts the immediate attack but also contributes to the identification and resolution of the

vulnerabilities being exploited. Consequently, effective detection serves to discourage future

attacks by elevating the perceived risk for potential attackers.

In this work, we implement a system able to detect and audit attacks on user credentials

in the browser. Our work builds upon the research of Gautam et al. [59], who proposed

mechanisms for securing users against the threats of malicious scripts and extensions. We

extend their methodology to detect ongoing attacks and audit the mechanism of attack,

primarily focusing on malicious scripts and extensions. This knowledge enables users and

administrators to proactively address and mitigate the effects of such security incidents,

thereby reducing their overall impact. Utilizing the information about the method of attack,

an administrator can priotize mitigations to certain groups of users. Also, the threat of

detection alone provides a deterrent to potential attackers, thereby reducing the likelihood of

future attacks.

We utilize the secure nonce inserted in [59] to find out the existence of a credential breach

attack and then perform audit of how the attack happened by cooperation between the users’

browser and the server. We utilize the browser audit logs to find the script responsible for

accessing potentially sensitive information (password fields in this case). We implement and

evaluate attack audit in the Firefox browser and verify that it is able to identify potential

source of the attack for a variety of methods. With the performance evaluation, we show that

our system is able to keep up with the generated logs in real-time, without the requirement

of a lot of storage space. We discuss the potential future use cases of audit-log based such

provenance engine in the browser, privacy implications with this method and future works.

106

To summarize, our contributions are as follows:

1. We utilize the nonce-based password replacement mechanism to detect local attacks on

the passwords.

2. We implement a mechanism for attack audit by utilizing the browser audit logs to find

the scripts responsible for accessing sensitive information.

3. We implement a proof of concept server and evaluate the performance of both attack

discovery and browser provenance method to show that the system is able to work in

real-time.

4. We discuss methods to identify path of attacks and privacy implications of the system

in the server.

6.1 Background

6.1.1 General and targeted XSS attacks

Cross-site scripting(XSS) attacks can be used to target specific group of individuals. A

specific example of using targeted attacks is using watering hole attacks targeted towards

a certain organization. Watering hole attacks are a type of cyberattack where attackers

specifically target certain organizations or groups. This is done by compromising websites

that are frequently visited by these groups. Attackers determine which websites are popular

with their targets and then infect these websites with malware. When individuals from the

targeted group access these compromised websites, their computer systems are at risk of being

infected. These attacks can be tailored to specific users, often based on their IP addresses,

making detection and analysis more difficult.

6.1.2 Browser Developer Tools

Modern web browsers like Chrome and Firefox include Browser Developer Tools [61, 113],

which help developers understand and fix web pages directly in the browser. These tools

107

allow for checking the page’s HTML, CSS, and JavaScript, and tracking how fast the page

loads. They are essential for quick editing and problem-solving in web development, making

it easier to build and improve websites.

Chromium based browsers utilize Chrome DevTools Protocol [60] to provide developer

tools with their ability to debug websites. Firefox, too, supports a subset of these protocols

These protocols enable scripts to access functionalities akin to developer tools, such as

inspecting and modifying HTML and CSS in real-time, monitoring and controlling network

requests, debugging JavaScript through breakpoints and stack traces, and analyzing website

performance and optimization metrics.

6.1.3 Credential Swapping Mechanism

In the work by Gautam et al. [59], they implement a credential swapping mechanism in the

browser designed to protect against malicious entities accessing a user’s actual credentials.

The mechanism operates as follows:

1. The user commands the password manager to fill the credentials on the page.

2. The password manager inserts dummy credentials, or a nonce, into the page’s DOM

and registers the actual credentials with the browser.

3. The user initiates the form submission on the page.

4. The browser replaces the dummy credentials with the actual credentials on the webpage

before submission.

5. The form, with the real credentials, is submitted to the server.

This mechanism ensures that any extensions or scripts accessing the DOM do not obtain

the actual credentials. The swap of credentials occurs after these potential threats have lost

access. However, these entities can access the dummy credentials input by the password

manager.

For clarity in this paper, we define the following terms:

108

• Credentials: The real user credentials saved by the password manager and swapped

in by the browser during submission.

• Nonce: The dummy credential filled by the password manager into the DOM, which

may be accessed by adversaries.

6.2 Threat model

Our threat model primarily addresses adversaries who are capable of extracting credentials

from the DOM. Building upon the framework set by Gautam et al. [59], we consider the

following types of adversaries in our model: i) Honest-but-curious entities, ii) DOM attackers,

and iii) Extension attackers.

Our approach builds on Gautam et al.’s evaluation, which confirms the effectiveness of

their mechanism against identified adversaries. We introduce a strategic layer by leveraging

attackers’ potential oversight—misidentifying nonce credentials as genuine. Our model

operates under the assumption that these adversaries are restricted to accessing only system-

inserted nonces, creating a deceptive layer of security.

We assume that the server and the user’s local system are secure against direct attacks,

instead focusing on browser threats. Compromising the local system or the server would

require far more resources and have more severe consequences than compromising the browser.

We consider man-in-the-middle attacks to be out of scope for a similar reason, as the securing

of SSL is a well-established practice.

A typical adversary in our model can retrieve and subsequently use the nonces from our

system, submitting them to the server at a later time. They operate under the assumption

that these retrieved values are genuine credentials. Similar to the extension attacker described

by Gautam et al., our adversary has the capability to remain in the system indefinitely,

monitoring all requests and responses from any web page visited in the browser. Extension

attackers are deemed particularly threatening due to their ability to persist within the system

and continuously exfiltrate user information.

An interesting aspect of the threat posed by malicious extensions is their level of access,

equivalent to that of password managers, since both are types of web extensions. This scenario

109

introduces challenges within the browser’s security model; password managers are trusted

entities, yet malicious extensions could potentially access the same sensitive information.

Therefore, it’s crucial to carefully manage the information that password managers read from

and write into the browser.

6.2.1 Motivating Example

To illustrate the relevance of our work, we present an attack scenario drawing examples on

real-world incidents:

Alice oversees the security and operational integrity of example.com, a website utilizing a

password-based authentication system. Her role is pivotal in implementing security measures

against potential cyber threats. Bob, a regular user, accesses the site via a web browser, such

as Firefox, using his username and password. Trudy, an attacker, aims to compromise Bob’s

account by stealing his credentials.

In this scenario, Trudy sends Bob a sophisticated phishing message containing a link to a

legitimate but compromised site. The message might seem to originate from a trusted source,

as seen in 2019 Yahoo XSS vulnerability [92] where email clients were compromised to send

malicious emails.

This XSS threat could stem from various sources, ranging from individual malicious actors

employing XSS attacks — evidenced by numerous CVEs in 2023 such as CVE-2023-6217,

CVE-2023-5758, etc — to sophisticated nation-state actors like APT35 [98, 120]. These actors

often compromise widely-used websites persistently. Notable examples include CVE-2023-

5758, affecting Firefox for iOS, and CVE-2019-18426, targeting WhatsApp users. Additionally,

nation-state actors might deploy malware like malicious browser extensions, tricking users

into installing them from seemingly genuine sources.

Once such a script or extension is active in Bob’s browser, it captures his credentials by

monitoring DOM password entries. As a result, Bob’s account is either infiltrated, leading to

continuous data theft, or completely hijacked, denying him account access. For Alice, the

repercussions are broader, as Trudy might exploit Bob’s account to target other users or

employ similar methods to compromise more accounts, potentially leading to a widespread

security crisis.

110

Awareness is key in such situations. If Bob recognizes the attack and understands how he

was compromised, he can be more vigilant in the future. Similarly, if Alice has knowledge

of the attack method, it enables her to take proactive measures such as fixing website

vulnerabilities, alerting affected users, or informing all users about the potential breach. As

such, our system aims to provide both Bob and Alice with the necessary tools to detect and

understand such attacks, thereby mitigating their impact.

6.3 System Design

In this section, we delve into the theoretical design of our honeypot system, that enables us

to detect an attack has happened and pinpoint how the attack happened. The overall design

of the system and the interactions between different actors is illustrated in Figure 6.1.

To provide a clear understanding of the system, the section is organized into several parts:

• Section 6.3.1 identifies the assumptions for the system design

• Section 6.3.2 outlines all the key actors involved in our system and describes their

respective capabilities within the design framework.

• Section 6.3.3 details the operational flow of our system utilizing the actors and services

defined.

• Section 6.3.4 elaborates on the ideal services and components that our system utilizes

to achieve its objectives.

6.3.1 Basis of the final system

Our defense system is fundamentally built on the credential swapping mechanism, as we have

detailed in section 6.1.3. This mechanism revolves around the concept of a nonce - a dummy

credential representing access to the user’s Document Object Model (DOM) or outgoing

request. In our model, there are three distinct scenarios where nonce access occurs:

1. A curious user inspects the content inserted into the page.

111

Password
manager

Browser

Attacker

Server

Nonce
Generator

1. Generate
Nonce

2. Fill Nonce
3. Register Password

4. Steal
Accessible
Credential

5. Send password

4. Replace
Nonce

6. Submit Nonce

7. Check password vs
nonce

8. Find how attack
happened

Nonce
Verifier

Attack
Auditor

Figure 6.1: Overall diagram of the honeypot system

112

2. An attacker, exploiting vulnerabilities, runs scripts on the current page that gain access

to the DOM.

3. A malicious browser extension with DOM access, possibly used for prolonged and

stealthy information theft.

While the first scenario is harmless, involving just the user’s curiosity, the latter two are

serious security concerns, indicating potential breaches. The presence of a nonce submitted

to the server becomes a pivotal indicator here, signaling unauthorized DOM access. In such

cases, it is presumed that attackers, mistaking the nonce for genuine credentials, attempt to

use it for unauthorized access, thereby revealing their presence.

There are however some genuine reasons for a script to access the credential field, such as

a password manager or a legitimate script utilized by the website. Care must be given to

differentiate these from the malicious scripts and extensions.

We also operate under the assumption that a legitimate user can successfully log into their

account using their browser. Therefore, in collaboration with the server and the authenticated

user, we aim to deduce the timing and method of any attack.

System goals

With the foundational assumptions in consideration, there are three apparent intermediate

goals of the system: (1) Generate proper nonces (2) Identify that an attack has occured using

the nonce submitted, and (3) Locate the attack with collaboration between legitimate user

and the server after an attack is detected.

In order to attain these primary system goals, our system introduces the necessity for

information transfer between the user and the server. This potentially raises privacy concerns

for the user with the server. Consequently, a secondary but crucial goal of our system is to

minimize the potential for such privacy infringements.

6.3.2 Actors

This subsection introduces the key actors, or components, of our system, each with a distinct

role: the password manager, the browser, the website server, and the attacker.

113

Password Manager: The password manager primarily manages users’ credentials, focusing

on storage and autofill functionalities. It incorporates a Nonce Generator service, creating

nonces to replace actual credentials on webpages, tailored for our detection mechanism. The

password manager also interfaces with the browser’s API for credential registration. In

scenarios without a password manager, the Nonce Generator is integrated into the browser

itself.

Web Browser: The browser’s function is to render webpages and provide an interface

for webpage interaction. In our system, the browser is modified to offer an API that allows

password managers to register credentials for specific form fields. When a form field has a

registered credential, the browser automatically replaces any input in that field with the

actual registered credential. If the server identifies an attack, the browser utilizes an Attack

auditor service to determine the nature of the attack. If the server identifies an attack, the

browser utilizes an Attack auditor service to determine the nature of the attack.

Website Server: The website server’s responsibility is to deliver the website to the browser

and verify login credentials. Upon receiving valid credentials, the server authenticates the

user. Invalid credentials are passed to a Nonce Verifier service, which determines if they are

mere typos or nonces generated by the Nonce Generator for detecting credential theft.

Attacker: The attacker is a malicious entity aiming to steal user credentials from the

client-side. They may employ XSS attacks or malicious extensions to gain access to the client

browser. The attacker’s goal is to capture credentials using their chosen method of attack.

Client: The design involves different interactions with the server which can be done from

both the browser and the password manager, choice depending on performance and privacy

issues involved with the design. So, for the rest of the paper, we consider the client as a

combination of the browser and the password manager.

114

6.3.3 Process

In this section, we outline the operational flow of our system, detailing the steps involved

in the process. The operational flow involves interactions between the actors specified in

Section 6.3.2 and ideal services, special modules that have specific operational requirements,

defined in Section 6.3.4. Figure 6.1 illustrates the ideal operational flow involving the main

actors, which proceeds as follows:

1. The browser requests a webpage from the server and displays it to the user.

2. The user prompts the password manager to autofill credentials into the webpage.

3. The password manager requests a dummy nonce from the Nonce Generator.

4. The password manager fills the webpage with the nonce.

5. The password manager uses the browser’s Autofill API to register the actual user

credentials with the browser.

6. The user instructs the browser to submit the form.

7. The browser substitutes the nonce with the actual user credentials.

8. The web server receives the form submission and verifies the credentials. Correct

credentials lead to user authentication.

9. The browser sends the nonces to the server to be utilized by the Nonce Checker.

When an attacker is involved, the system’s operation consists of three phases: the

credential theft phase, the attack detection phase, and the attack audit phase. In theses

phases, the system performs the following actions:

1. Credential Theft: Adversaries attempt to extract users’ credentials but instead obtain

the nonces, which they mistakenly assume to be the actual credentials. The system is

gathering information about it’s execution to identify attacks in the future.

2. Attack Detection: The system identifies that an attack has occurred when the stolen

nonces are submitted.

115

3. Attack Audit: The system collaborates between the user’s browser and the server to

gather specific details about the attack.

The detection phase occurs when the server receives a nonce submitted by the attacker.

In the detection phase:

1. The server recognizes that the submitted credential does not match the user’s actual

credentials.

2. The server consults the Nonce Verifier service to confirm that the submitted credential

is a security nonce.

3. The server informs the user’s browser that an attack has occurred.

The audit phase occurs directly after the detection phase. In this, the server requests the

user to investigate the attack.

1. The server informs the user’s browser that an attack has occurred and provides with

additional information required for detection.

2. The server then utilizes the Attack auditor service to determine how the attack was

executed. This service can be in the server or the user’s browser.

3. The attack information is then shared between the user’s browser and the server for

further mitigation steps.

4. Based on this knowledge, the server takes appropriate measures to secure the user’s

account and address the exploited attack vector with minimal effort.

6.3.4 Ideal Services

This section focuses on various ideal services, envisioned as system blocks that provide specific

functionalities in an ideal manner. Each ideal service aligns directly with a specific goal of

our system, making them essential components within the overall framework. In the design

phase, these services are assumed to function optimally, flawlessly executing their designated

roles.

116

We assume that each service performs without errors or limitations, providing an ideal

environment to base our design decisions on. This approach allows us to first conceptualize

the optimal scenario and then work through a design search to validate and justify our

choices. As we progress through the design process, we will critically evaluate each service,

considering practical limitations and challenges to refine our initial ideal assumptions into

feasible, effective solutions.

Nonce Generator

The Nonce Generator is responsible for creating nonces that are inserted into the Document

Object Model (DOM).

The nonces generated have specific characteristics:

• Indistinguishability: Nonces are designed to be indistinguishable from real passwords.

This ensures that any entity accessing only the nonce cannot discern whether it is a

security nonce or an actual user’s password.

• Password Privacy: The nonces reveal nothing about the user’s actual password.

Given these properties, there are several design options for generating nonces:

1. Creating PCP (Password Composition Policy)-compliant random passwords. [58]

2. Producing human-like passwords.

3. Utilizing a deterministic seed to generate random passwords.

4. Mutating the user’s existing password.

These mechanisms and assumptions underlying nonce generators are typically seen in

honeyword systems aimed at identifying password database thefts, as noted in existing

literature [84, 8, 47, 166]. Our Nonce Generator, however, differs from these systems. In

our approach, adversaries do not access the user’s actual credentials, preventing them from

comparing different strings one of which is user’s actual password. Unlike typical honeyword

systems, where adversaries might analyze a set of credentials to guess the actual password,

117

our system does not allow access to genuine credentials or a variety of passwords for different

users. Therefore, our nonces do not require password privacy attribute and need not resemble

the users’ actual passwords. Accordingly, our design avoids mutating user passwords to

prevent adversaries from learning about the real credentials.

A password manager, while not essential, is a frequently used component in our system

Users employing password managers often generate passwords [125, 121], leaving adversaries

uncertain whether the current users’ passwords are generated or manually created. This

ambiguity deters adversaries from dismissing credentials that appear random but might be

genuine user passwords Thus, as generated random passwords are equally probable, our

system doesn’t rely on the indistinguishability attribute, . Accordingly, our design uses

PCP-compliant random passwords as they’re the most secure and does not undermine the

characteristics required for the system.

Nonce Verifier

As previously established, our second system goal is to identify that an attack has occured

using the nonce submitted. Nonce verifier is the ideal service that allows us to achieve this.

The primary goal of the nonce verifier is that it verifies if a string submitted is a nonce or

not. The way it is meant to be used is that a user or administrator is able to submit a string

and verify if it is a nonce. For any login attempt, the service will be able to determine either

it is or is not a nonce.

Most obvious case might be that everything that is not the users’ genuine credential can

be flagged as a nonce. But there are genuine cases in which users either submit typos of their

existing credentials, enter passwords for a wrong website, or are trying different permutations

of passwords to remember which permutation [162] they used as their actual credential.

Therefore, the service cannot flag everything that is not the users’ genuine credential as a

nonce. The ability of the Nonce Verifier to accurately identify nonces ensures that genuine

user errors are not mistaken for security incidents, thereby maintaining the integrity and

reliability of our system’s security measures. To not open up channels of security and privacy

attacks, we only allow checking of the nonces in the server.

118

A simple method for the verifier to work is by a mechanism that allows to store nonces

either in the server or the client. If storing in the server, for every failed login attempt,

the server checks if the submitted credential is a registered nonce. This would require a

mechanism for the client to register the nonces with the server. And every time a genuine user

logs in, the server can notify the client that an attack has happened. To prevent an adversary

from misusing the nonce registration process, the server can limit only authenticated users

to register nonces and have a throttling mechanism to prevent overloading the server with

nonces.

On the other hand, we can opt to store nonces in the client side. This would then require

the server to query the client with failed notifications to verify if the submitted credential is

a registered nonce. So, every time a user logs in, the server sends failed logins sent to the

server since the last check to the client. As the client can already verify that it’s a genuine

server due to SSL certificate, there’s no issue of an adversary acting as the server to input

false positives into the system. In either case, the communication between the client and the

server can be done to identify an attack has happened. After an identification of an attack

has occured, the server and the client can collaborate to let each other know and identify the

source of the attack.

The malicious extension adversary having the same capabilities as the password manager

poses a challenge to send nonces to the server as any method we introduce for the password

manager to send nonces to the server can be utilized by the adversary. As the adversary can

also read outgoing requests from other extensions, the adversary can also read the nonces

sent to the server. And as the user needs to authenticated to the server, utilizing users’s

authenticated tokens from the password manager or the browser exposes the authentication

token to other security risks. Therefore, we opt to store the nonces in the client side and have

the server query the client for the nonces. An advantage of this method is that the client can

then decide if they want to let the server know about the attack and any associated details.

TOTP based approach TOTP [142] is a mechanism to generate(or share) common strings,

usually 6 digits numbers, between two different entities. This sounds very similar to our

problem to share generated nonce between the client and the server. So, it might seem that a

119

TOTP [142] like creation and checking mechanism for nonces, by simultaneously generating it

on both client and server side, is a good solution. This method would be simple and efficient,

as it would only require a pre-shared secret key and a synchronized clock in 30 seconds block.

However, this mechanism is not suitable for our system as the adversary might utilize the

nonces at any time in the future. So, we’ll not have a timestamp to regenerate the nonces

in the server to check. Therefore, this method is impractical for nonce verification in our

system.

Process With the discussion of mechanism of nonce verifier, we can now discuss the process

of nonce verifier. The process of nonce verifier, as identified in figure 6.2, is as follows:

1. The client side generates a nonce and other required metadata.

2. The client securely saves the credentials for future use.

3. The user logs in with the actual credential <U, P> to the server.

4. The server authenticates the user.

5. If the authentication is successful, the server looks up any failed logins that the user

has had since the last login.

6. The server sends the list of failed logins to the client.

7. The client checks if any of the failed logins is a registered nonce. If there’s a match, an

attack has taken place.

8. The client performs further operation to identify the source of the attack.

9. The client informs the server about the attack, deciding the amount of data to send to

the server based on their privacy preference.

Attack auditor

The final goal of our system is to locate how the attack occured after an attack is detected.

Attack auditor is the ideal service that is responsible to locate the mechanism of attack after

120

User Server

Login Request <U, P>

Authenticated

Attack found* <L,metadata>

Verify failed logins <[L], metadata>

Figure 6.2: Mechanism to register and detect nonces

121

an attack has been detected. After the server identifies that a nonce has been submitted,

and there’s a possibility of an attack, the server communicates with the browser, after a user

logs in, and attempts to identify the source of the attack.

The identification of attack can happen in the users’ side or the server side. For attack

identification to happen in the server side, the user needs to send all the saved information

to the server. We discuss the advantages and issues with this method in § 6.3.4. Overall, due

to privacy issues of sending all the information to the server, we decide to investigate the

attack in the users’ side.

We draw similarities from attack reconstruction and audit systems, which are widely

used in post-mortem attack analysis [99, 168, 46]. Typically, the process includes recording

events and agents to create a provenance graph, which is then used to trace the preceding or

succeeding nodes and edges, starting from the specific agent or event in question. This way

the system is able to identify the agents and events directly responsible for a given incident,

and pinpoint events that directly cause a specific event or agent. So, the attack auditor is

able to identify the source of the attack by tracing the preceding or succeeding nodes and

edges, starting from the specific agent or event in question. This graph-based approach is

deterministic and provides a clear path to identify the source of the attack. The process

involves the following steps: (1) Recording events and agents during normal execution of the

system, recording events occuring during the attack, (2) Analyzing the recorded events to

identify the agents and events directly responsible for the attack.

Recording attack information The attack auditor records information about the system

during normal execution. The information includes events, actors, and their connections.

Usually, the information is stored in a graph structure, where the nodes are actors and events,

and the edges are the connections between them. The graph structure allows the system to

trace the preceding or succeeding nodes and edges, starting from the specific agent or event

in question. The graph structure is deterministic and provides a clear path to identify the

source of the attack, even though it might have some false positives.

To acquire the information, existing systems utilize logs of different events that happen,

such as system calls, network connections, and file accesses in case of operating systems [168].

122

The logs are acquired by instrumenting the system and utilizing the exising audit logs of the

software. Utilizing logs has the advantage of being less compute heavy, and most systems

already record logs for a certain period of time. Web browser being run in a less powerful

machine, we decide to utilize audit logs to record information about the system.

Systems involving linux kernels identify sensitive information sources such as /etc/passwd,

/etc/shadow, and /etc/sudoers, and record the access to these files, among other accesses. In

terms of credentials in the web browser, we identify that any form input field can contain

sensitive information. So, we record the access to these fields.

Possible attacks to detect The most common attack to exfiltrate the credentials is

through script execution in the browser that accesses the credential field. We identify two

main ways these can occur: (1) malicious scripts that directly access the credential field, and

(2) malicious extensions that inject scripts into the current page. Malicious scripts typically

get loaded with the page in cases of cross site scripting attacks.

Another way malicious extensions can access the credential field is by utilizing the

webRequest webextension API to read the outgoing request data. This threat vector is not

as common as access through the DOM, but is unique to browser extensions.

Additionally, there are ways in which scripts don’t access the credential field directly, but

can infer the credential field information indirectly [71]. One such example is that the script

triggers CSS attr styling based on the value of the credential field and reads the styling to

infer the value of the credential field.

So, the attack auditor needs to be able connect credential field access to these adversaries.

Identifying the adversaries and the methods they utilize to access the credential, we finalize

the events that need to be recorded in the browser:

• DOM field loaded

• Script inserted by an extension

• Script inserted during page load.

• Access to the credential field via DOM

123

• Access to the outgoing request data

Figure 6.3 shows the graph of all the nodes and events that are recorded in the browser.

Uniquely identifying each individual script and extension is crucial for the attack auditor

to identify the source of the attack. For extensions, we can utilize the extension id to identify

them. However, scripts do not have a unique identifier. So, we utilize a hash of the script

and url to identify them. To identify the session, we generate a unique identifier for each

session, and include it in the graph. And then to identify input fields, we utilize the element

id if present otherwise we generate unique id for the field. In order to preserve maximum

information, we can include complete scripts and html for long term storage.

Also, the records can be stored for a long time before an attack is detected. During that

time, a lot of scripts and extensions will have accessed the credential. To temporally divide

the time sections, we introduce the concept of profiling indicator. Profiling indicator is a

unique identifier string that identifies a period of time when the nonce was used. The browser

creates unique profiling indicators for different periods of time, registers it along with the

nonce during the Nonce Verifier mechanism, and utilizes it during the attack detection. The

server provides the client with the profiling indicator for a more fine-grained analysis and to

identify smaller set of possible attacks. The profiling indicator is included in the graph.

Analysis of data For analysis intrusion detection systems utlilize two different kinds of

methods, mostly depending on the richness of recorded data, methods utilizing provenance by

building a data flow graph or inference mechanisms such as machine learning and statistical

reasonings. Inference methods are better in case the recorded information is not rich enough

and there needs to be some intuitive inference about the data. Modern statistical and machine

learning methods work pretty well for these, but still have lower accuracy. These methods are

also slower. They also need to trained, and keep batch training during the execution to work

which requires a powerful machine able to run the compute-heavy algorithms. Graph-based

methods, however, deterministically create a graph of data flow path and analyze the graph.

It’s more accurate but requires rich data that can be converted into a graph.

Identifying our need for the mechanism to be globally implementable in less powerful

machines, we decide to utilize graph-based method that requires minimal compute overhead.

124

Extension
Insert background script

Page script

Web response Insert page script

Request data
Webrequest API

DOM
credential field

credential field access

Figure 6.3: All nodes and events for attack audit

125

The processes stored(figure 6.3) are meant to provide a causality from either script or

extension to credential access. In the graph, edges are events occuring in the browser. The

nodes are different actors in these, such as browser extension, script, and credential field. Each

individual browser extension, scripts, and credential fields have unique identifier associated

with them. As we can see in figure 6.3, we can follow the graph back from each of these

access to the script or extension that caused the access.

Process With the design of the attack auditor identified individually, the complete process

breaks down to:

1. The browser saves the log information during it’s normal run. The information include

profiling indicator, nonce, events, and actors.

2. The profiling indicator is included during registration of nonce in the noce verifier.

3. When the server detects a possible attack has occured.

4. When a user is logged in, the server lets the user know that an attack has been detected,

including a profiling indicator.

5. The browser uses given profiling indicator to identify the possible avenues of attack.

6. The browser identifies candidate attackers, and send this to the server.

7. The server uses the information identify the attacker (and utilize the script hash to

remove genuine server scripts from candidate list)

8. The server sends back the refined list of attackers to the browser.

9. With the information of how the attack occured, the user and the server can do the

response to the attack.

Any adversary listening to the requests and response can see the failed logins sent by the

server to the client. If they keep listening to the overall communication, they might be able

to find that a string was a nonce and it was detected. But at that point, the adversary has

already been detected and the user and the server can take appropriate measures to prevent

126

further damage. The adversary will be able to know they’ve submitted a nonce, but only

after they have already submitted a nonce and the attack has been detected.

Attack audit in the server

In the previous sections, we explored leveraging client-side computation, specifically the

user’s browser, for attack audit purposes. However, the server can act as an alternative for

conducting the audit, should it receive all necessary information from the client. Given that

browsers operate across a spectrum of devices with varying processing capabilities, the server

undertaking the audit analysis emerges as a beneficial strategy. This entails the transfer of

all collected information from the user’s system to the server, allowing for a comprehensive

audit.

The server-based attack audit’s primary advantage is its ability to compile a holistic view

of the attack by accessing data from all users. Moreover, the server can scale its computational

and memory resources more effectively than individual user systems, providing an efficient

means to store and analyze extensive data. Nonetheless, this approach is not without its

drawbacks. The potential for computational overload becomes apparent with a large user

base, as the server must manage and process significant volumes of data. More critically, this

method poses substantial privacy risks, granting the server access to detailed information

on the user’s system, including scripts and extensions unrelated to any attack. Such access

could inadvertently expose user-specific software, like ad blockers and VPNs, to misuse.

Further, the centralized nature of this approach introduces a significant security

vulnerability, as any successful attack on the server could compromise the privacy of all users’

systems en masse. After carefully considering these factors, especially the profound privacy

concerns and security risks against the marginal benefits, we have decided against adopting

this server-based audit method.

6.3.5 Utilizing a trusted third-party server

All previously discussed approaches rely on direct client-server communication for nonce

detection. An alternative method involves employing a trusted third-party(TTP) server

127

to coordinate the detection and analysis of nonces. This server serves as an intermediary,

informing both the client and the server of ongoing attacks. It offers a centralized repository

for storing nonces and profiling indicators, and it notifies the main server of detected attacks.

This arrangement allows the main server to consult the third-party server, which is more

accessible than the user’s browser, thereby reducing storage burdens on both the client and

server sides.

Integrating a trusted third-party server for nonce detection presents distinct benefits. It

acts as an intermediary, streamlining communication between the client and server regarding

attack notifications. This server centralizes nonce storage and profiling indicators, alleviating

storage demands on the client and server while facilitating broader attack analysis. Its

consistent availability enhances the system’s ability to detect and respond to threats efficiently.

However, this approach also introduces notable challenges, primarily concerning privacy.

The first point of concern is establishing trust with the third party server. The server’s access

to extensive user data for all participating web servers poses risks of misuse, especially for

advertising or tracking. Even if the users and servers trust the data usage by third-party,

establishing trust is complex, with risks of impersonation by malicious entities. With the

third-party server acting as a central repository for nonces and profiling indicators, it becomes

a single point of failure, potentially compromising system security. Moreover, adopting a

third-party server adds financial costs and system complexity, requiring careful oversight.

Dealing with privacy issues in the third-party server In the section below we discuss

potential solutions to issues about trust of user data with the third party server. The privacy

issues that come up with the third-party server are:

• TTP can identify usernames and credentials(as failed logins also contain typos of actual

credentials) for the user.

• TTP can connect the user with the website server.

• If a malicious entity gains access to the TTP, it can access all the information about

the user.

128

To prevent the TTP from identifying usernames and valid credentials, we utilize truncated

hash based k-anonymity [100]. The basic idea for this is that the TTP only has access to

truncated bytes of hash (If we assume a hashing algorithm that returns 8 characters as

ABCDEFGH for the hash of msg, kn(msg) would return some truncated portion of the

hash, i.e. ABCDE, instead of the whole hash). So, even if TTP can find a string that

matches the hash, it can’t be said with certainty that it is the actual credential because

some information is lost in the truncation. So, using this method, we can prevent the TTP

from identifying usernames and valid credentials for the user. As the TTP at no point

has identifying information about logins or nonces, we also prevent malicious entities from

inferring user’s credentials or nonces even if they gain access to the TTP. As a downside, we

introduce some possibility of collision and false positive.

The same can be done for server identification. The server and client both only submit

truncated hashes of server identifier. However, this method introduces a new problem.

Malicious entities can act like the server and send the credential thtey have to check if it’s

a nonce. To prevent this, we utilize signed messages using the server’s private key. But,

the downside of this is TTP can identify the server by the signature and connect user with

the server. We relax this privacy requirement to improve security by not allowing malicious

entities to check nonces.

In Figure 6.4, the following are the meaning of the symbols:

• U: username

• N: nonce

• L: Actual user credential

• PI: Profiling Indicator

• Y/N: The decision if an attack has been detected. Yes/No?

• Sign(_): Signed message

• kn(_): Truncated hash value.

129

User

Trusted Third
Party Server

Server

PI, S, kn(U), kn(N) Sign(S, kn(U), [kn(L)])

PI, Y/N

PI, attack found

real password login

1. Browser registers
values

2. User attempts to log
in

3. Server registers
failed logins

4. TTP lets server
know attack has been

found

5. Server lets browser know
PI of the attack found

6. Browser finds out how
the attack happened

Figure 6.4: Mechanism to verify nonces using a trusted third-party server

130

Figure 6.4 shows communication between user (user browser), Trusted-Third Party Server,

and the website server. Trusted-third party system is shown here to graphically separate out

different functions happening in the system. However, direct communication between user

and server is also possible.

The overall process that lets us verify a nonce, i.e. to detect an attack occured, is as

follows:

1. The browser generates a nonce(N) and an accompanying profiling indicator(PI). This

profiling indicator will help in further processes down the line.

2. For every generated nonce, the browser registers <PI,S, kn(U), kn(N)> to the trusted

third party server.

3. The browser sends the actual credential to the server to log in.

4. The server saves all saved logins and registers it at the server by sending a signed

message <S, kn(U), kn(L), Sign(S, kn(U), kn(L))> to the TTS.

5. The TTP performs the required process to figure out if an attack has occured. If an

attack has occured, TTS lets the server know by including the PI.

6. Server lets the browser know an attack has happened with the specific PI.

7. The browser conducts processes to find out how the attack occured.

6.4 Implementation

In this section, we detail the implementation details of our system. For the server side, we

implemented a custom website in flask that implements all the functionalities of the system.

This includes endpoints to authenticate user, register nonces, and detect attacks. As the

system requires new endpoints on the server side unlike Gautam et al. [59], we did not test

our system on existing websites. On the browser side, we implemented:

• A browser extension that acts as a password manager to generate nonces, utilize the

secure API[59] to insert actual credentials, and register the credentials with the server.

131

• Audit logs on Firefox 107.0 that provides information about script access to the DOM

elements and all related events.

• A service that listens to the browser logs, identifies attacks and lets the server know

about the attack.

• Malicious scripts that listen to password fields and exfiltrate the credentials.

• Malicious extension that inserts scripts into the page to exfiltrate credentials, as well as

listens to outgoing requests using webRequest API.

In section 6.3 we went through different alternatives for the design of the system. There

were multiple subjective design decisions that we chose as they were optimal for our design

goals. But as goals of the system change, the design decisions might also change. For example,

if the system is to be deployed in a corporate environment, the system might need to be

deployed in a way that it does not impact the performance of the browser. Browser code

is monolithic and change in code requires a lot of time to merge. So, design changes in the

future will require changes in the browser itself, which is a difficult task. More changes in

the browser might lead to vulnerabilities and performance impacts. For those reasons, we

chose to limit the amount of changes required in the browser and decouple the subjective

decisions from the browser. Therefore, we opted to implement a separate service that listens

to triggers from the browser to identify attacks like in Mnenosyne [7, 99].

We implemented an auditor service in Python. The auditor service keeps listening to the

browser logs and act on the triggers based on the audit logs. The audit logs are tagged as

‘SecureBrowserChannel::’ to identify just the required logs. The auditor service then parses

logs one at a time to get to the goals of the system. As they’re audit logs, all the logs are

timestamped.

6.4.1 Generation of nonce

Password generation being trivial, we utilize the password manager to generate random

passwords that comply with the existing system.

132

6.4.2 Verification of nonce

We opt to save credentials in the client side. The password manager inserts the credentials

into the DOM and then registers the nonce with the browser. In the secure browser channel

mechanism [59], the password manager sends the credentials to the browser only if it detects

that the nonce is not tampered with. When the actual credential replacement take place, the

browser triggers a log event ‘RegisterNonce’ in nsHTTPChannel containing the nonce and

the url to be registered. The auditor service reads this and then records the nonce in a sqlite

server for future reference.

At a later time, the user logs in to the server. The server checks to see if there’s any failed

logins between the current time and the last time there was a nonce verification event. If there

is, the server sends an HTTP response to the browser with the header ‘X-Nonce-Verification’

and the body containing all the hashes of failed login credentials and timestamps, and related

metadata. In the browser, we check if the header contains ‘X-Nonce-Verification’ when

the channel is being created i.e. HTTPBaseChannel and if it does, we trigger a log event

‘NonceVerification’ containing the request body i.e. the hashes of the failed login credentials.

The auditor then reads this log event and checks if any of the failed credentials match with

the nonce. If there’s a match, we found that an attack is detected. This triggers the attack

audit phase of the system where we investigate the method of attack. For this proof of

concept, we implemented the endpoint \sbc_attack at the website to let the website know

that an attack has been detected for a specific failed login. To prevent any other agent to

read the failed login credentials request, we remove the header ‘X-Nonce-Verification’ from

the request.

6.4.3 Attack auditor

During normal functioninng of the browser, we utilize the browser logs to create a provenance

graph that shows connection between script execution and credential field access. When an

attack is detected, attack audit phase is triggered. The service then tries to collect all the

possible agents that have accessed the credential field during the time of the attack. The

service then tries to find the source of the attack by analyzing the provenance graph.

133

Audit log data collection

We try to utilize existing browser audit logs to gather information about potential attack

information. As we found that most existing logs weren’t enough to trace back the source of

the attack, we decided to insert our own logs to gather more information. We insert different

log events at different points in the code. All logs are tagged as SecureBrowserChannel:: to

identify the logs.

Script load: When a script is loaded by the browser in ScriptLoader, we log the whole

script, script hash, url, and channel id in the log as ‘ScriptLoad’. When the script is loaded,

we trace the source of the script and log the source of the script as well. The source is a url

that belongs to a remote domain or url belonging to a web extension.

Element access: We overload the value getter method of HTMLInputElement(all

<input> fields) to log the raw html, url, and channel id in the log as ‘ElementAccess’. When

element access occurs, we also trigger a log event ‘CallStack’ to log the call stack of the script

that accessed the element.

Call stack: When an element is accessed, some script will have called it from somewhere.

Previous works log individual code block calls, and then try to trace the source of the call

back in the provenance graph. This is very expensive as we’re logging every single code block

call. Also, malicious code can trigger benign code to access the element with multiple levels

of redirection. So, actually tracing it back to that element is non-trivial, causing a lot of false

positives.

In contrast to previous approaches, we query and then log javascript call stack traces

when the element is accessed. This is more efficient way of tracking the source of access, as

logging is only triggered when there’s a possibility of malicious behavior. As the value of the

input element is present in a single point, and any script requiring access to the data needs

to access the getter, we can be confident that the call stack is the source of the access. This

stack trace is logged in the log as ‘CallStack’.

For that, we utilize the current JSContext of the channel. We follow frame by frame of

the JSContext, printing the script, column, and line number of the frame. As we save the

whole script already, this allows for any future analysis to trace back the source of the access.

134

For extension scripts, there’s an additional step. The scripts have url for internal UUID

of the extension like 0fb1d4a6-43e8-4a42-9098-d8bb80e69114 which is not very useful.

We convert this to the extension id of the extension like

b3001491e9ad5b72fa596ac2c38fb2b6ba1991c6@temporary-addon, by querying the

internal uuid in the browser.

Request access: When a request is made by the browser, we log the url and the channel

id in the log as ‘RequestAccess’. When the browser emits the ‘http-on-modify-request’ event,

we log all the extensions that listen on the request from ‘WebRequest’ API.

Finding candidate agents

When the auditor service consumes the logs, we utilize the logs to find the candidate agents

while the log is being parsed. For the script access, we walk through the call stack log to

find all the scripts that access the element. An example call stack is shown in figure 6.5. In

this example, the remote script ‘https://example.com/login/pw_listener.js’ is the source of

the access and puts in a listener to the field. The listener is triggered due to web browser

password manager inserting the credentials into the password field. It also contains all the

script triggers from within the browser. So, for candidate agents we filter all the browser

internal scripts identified by ‘resource://gre/’ and ‘self-hosted’ scripts.

The auditor service filters the browser interal scripts and then keeps a script of the remote

scripts that access the element. The overall process of filtering can be found in Figure 6.6.

As there can be indirect access to the element, instead of having just the top script, we keep

all the scripts that access the element.

In case of remote script, we get store the url and the hash of the script. Scripts inserted by

browser extensions have the browser id in their urls. So, these scripts can be easily identified

and stored in the database. Also, we store the browser extension id from the WEbRequest

API in the database.

In our mechanism, we are logging every single access to the element. This opens up to

the attack of the system being overwhelmed by the logs. To prevent this, the auditor service

only records unique candidates for a single session. The session can be differentiated with the

135

1 2024-04-07 17:36:00.654305 UTC - [Socket 1916219:Main Thread]: E/nsHttp
SecureBrowserChannel::CallStack

2 0monitorPasswordChanges/<() ["https://example.com/pw_listener.js":12:6]
3 1_fillForm() ["resource://gre/modules/LoginManagerChild.jsm":2861:24]
4 2loginsFound() ["resource://gre/modules/LoginManagerChild.jsm":1345:9]
5 3loginsFound() ["self-hosted":1230:26]

Figure 6.5: Example call stack triggered by browser password manager and listener script

136

Call stack

Individual
Scripts

External
Scripts

Scripts and
Extensions

Collect all scripts

Remove internal scripts

Filter for extension

Figure 6.6: Filter call stack to find candidate agents
137

channel id. This way, the maximum number of elements that is being stored is the unique

number of scripts and extensions working in the page.

6.4.4 Data from multiple users

From our mechanism, we can only find the candidate agents that have accessed the element.

Due to the nature of the browser, finding candidate agents might be the only thing that can

be found out from the logs. But the server has multiple users. So, the server can combine

the logs of multiple users to find the actual source of the attack. The server can combine

candidate agents of multiple users to find the actual source of the attack. This can be done

by finding the intersection of the candidate agents of multiple users in the server.

Script attacks Some of the candidate agents common among multiple users are genuine

scripts that are used by the website. The website utilizes the hash included with the script url

to distinguish genuine script from malicious xss scripts. The common scripts among multiple

users that are not in the website’s whitelist are considered as the attacker scripts.

Extension attacker In case of an extension attacker, the extension id will be seen as a

candidate attacker. When sent to the server, the server can see a pattern of same extension

attacker in multiple users. A benign candidate is a password manager. But as extension

identifiers are the same across different users, the server can differentiate between the password

manager and the extension attacker.

6.5 Evaluation

In this section, we are evaluating the system for correctness and performance. For correctness,

we run the system with different types of attacks to verify that the system can detect those

attacks as discussed in the design section. In terms of nonce verification, the system should

be able to register and verify that a failed login from the server is a nonce. Along with that,

For the attack auditor, the system should be able to detect the scripts that are accessing the

password field and the source of the script. The system would then be able to make a list of

138

unique scripts accessing the field and store them for future lookup. As all these operation

affect the browser, we test that the added functionality in the browser would not overwhelm

the existing performance of the browser. Furthermore, we test that the auditor can keep up

with the logs generated by the browser so that the system is viable of running in real-time.

For evaluation, we implement a concept website that contains a user login page. We

implemented detection and audit features independently to evaluate their correct working

and performance. We implemented the auditor service in Python, which runs in the same

machine as the browser and continuously parses the logs as they are being generated. Both

the auditor and the browser are running in an XUbuntu virtual machine with a single core of

Intel i9-9900 CPU and 6GB of RAM. As our service runs in parallel to the browser, most of

the time overhead for the browser is limited to the generation of the logs. All the timing

overhead in the browser is measured using chrono::high_resolution_clock in C++, by

adding measuring code snippets around the code that is being measured. For the auditor,

datetime.datetime is used in Python. Using our proof of concept website, we evaluate the

performance of the system.

6.5.1 Nonce verifier

We ran the complete nonce verification process i.e. registration of nonce from the browser,

and checking for the nonce in the failed logins.

Registration of nonce The password manager extension inserts the credentials into the

login form during the submission phase. A single line of additional log is generated during the

registration of the nonce that is parsed by the auditor service. The generation of singular log

during the submission phase takes 763ns. Comparing with the whole process of submitting

the form, which takes 2 seconds, this is an increase of 38*10−6%. A very negligible timing

overhead. The time taken by the auditor service to parse the line of log and then insert into

the sqlite database if the nonce is not present is 20.41ms, shorter than the time taken to

submit the form. This short amount of time makes it possible that the auditor can keep up

with the browser logs in real-time.

139

Storage space might be a scarce resource on the client side where the browser is running,

so we evaluate the additional storage space required for our system. We assume that 1 million

failed logins occur in the website between the time of previous nonce check and the current

nonce check. As the server will have different throttling mechanisms to control the number of

failed logins that can be input for an account and the number of failed logins will be limited.

1 million failed logins correspond to 2 months of failed logins at the rate of one failed login

request every 5 seconds. In the server, the 1M failed logins take up 65.2MB space without

compression. This isn’t a huge storage space for the server. And servers usually always store

logs for a certain amount of time for debugging purposes. The number of nonces will always

be less than that as there is only so many times a user logs into the system. If a user logs

into the page once a day, 1000 nonces is a good estimate for 3 years time. Storage of 1000

nonces in the sqlite database by the auditor service takes up 136.72KB space. This small

amount makes it possible that even devices with limited storage space can run the this system

without running into memory issues.

Checking for the nonce For checking of the nonce, our server sends a static list of 1M

failed logins to the browser with ’X-Nonce-Verification’ header. This is a separate request to

the browser which opens up it’s own HTTPChannel and does not affect the performance of

when the user is in the website. The auditor takes up 0.89 seconds(897.35 ms) time to check

if any of the 1M failed logins in the list is present in the nonce database. This list of failed

logins doesn’t need to be stored locally as it is only used for verification. Due to this very

short amount of time required for checking the credentials, the auditor can keep up with the

browser logs in real-time and we can detect the nonce in real-time.

6.5.2 Attack auditor

The attack auditor is different than the nonce verifier as there can be different methods of

attack.

Methods of attacks We identify different methods by which an adversary can try to

access the field, to verify that the auditor can detect the scripts that are accessing the field.

140

We first identify the methods by which scripts could be added to the current page, with

our threat model in mind. We identify the following methods: (1) developer console, (2) inline

script in the HTML served, (3) script file attached to the HTML served, and (4) content

script injected by a malicious extension. The only method to read the value of the field is by

using the value attribute of the field[111]. We also consider the possibility of scripts accessing

the credential in an indirect way, i.e. by using a listener on the field to fetch the value on

different events or by using a timer to periodically check the value of the field.

Combining the method by which scripts could be added to the page and the method by

which the scripts could access the field, we identify all the possible methods using a cartesian

product. For each of the method above, we were successfully able to identify the scripts

ran, and the source (devtools console, inline script, separate script, malicious extension) of

the script. In the figure 6.7a, we show an example where the same field is accessed by two

different scripts. The auditor successfully keeps track of the candidates and stores it in the

sqlite database as can be seen in 6.7b.

Performance To identify if the auditor is able to run in real-time, we try to verify how

long does it take to parse the logs generated in an hour. For this, we’re trying to have a

scenario which is the upper limit of the logs that would be generated for a login page. We

utilized the same proof of concept website containing the login form for this evaluation. We

ran 100 scripts in the website that accessed the password field and 2 scripts that did not.

The scripts had a timer that ran every 5 seconds to check the value of the password field,

triggering an audit log. We ran the whole system for 1 hour for performance verification.

This is a very unlikely scenario as the number of scripts that access the password field will be

limited to the number of scripts that are running in the website and will be far lower than

100.

As we discussed in the implementation section 6.4, even though there could be multiple

times that a specific script accesses the input field, we only need to store unique agents that

access it. We do store the raw log for future use, but for this research the raw logs are not

used and can be deleted after a certain time. The auditor checks if the agent is already

141

1 2024-04-07 18:43:00.913254 UTC - [Socket 1916219:Main Thread]: E/nsHttp
SecureBrowserChannel::ElementAccess <input type="password"
placeholder="Enter Password" name="psw" id="psw" required="">

2 2024-04-07 18:43:00.919102 UTC - [Socket 1916219:Main Thread]: E/nsHttp
SecureBrowserChannel::CallStack

3 0monitorPasswordChanges/<() [
"https://web.eecs.utk.edu/~agautam1/login/pw_listener1.js":12:6]

4 1_fillForm() ["resource://gre/modules/LoginManagerChild.jsm":2861:24]
5 2loginsFound() ["resource://gre/modules/LoginManagerChild.jsm":1345:9]
6 3loginsFound() ["self-hosted":1230:26]
7

8 2024-04-07 18:43:01.291747 UTC - [Socket 1916219:Main Thread]: E/nsHttp
SecureBrowserChannel::ElementAccess <input type="password"
placeholder="Enter Password" name="psw" id="psw" required="">

9 2024-04-07 18:43:01.292232 UTC - [Socket 1916219:Main Thread]: E/nsHttp
SecureBrowserChannel::CallStack

10 0monitorPasswordChanges/<() [
"https://web.eecs.utk.edu/~agautam1/login/pw_listener2.js":12:6]

11 1_fillForm() ["resource://gre/modules/LoginManagerChild.jsm":2861:24]
12 2loginsFound() ["resource://gre/modules/LoginManagerChild.jsm":1345:9]
13 3loginsFound() ["self-hosted":1230:26]

(a) Multiple call stacks for the same field access
1 timestamp | url | field_id | agent_url | hash
2 2024-04-07 18:43:00.919102 UTC| https://example.com/login/ | psw |

https://example.com/login/pw_listener1.js | d9f2d16bb5f0
3 2024-04-07 18:43:01.292232 UTC| https://example.com/login/ | psw |

https://example.com/login/pw_listener2.js | d9f2d16bb5f0

(b) The database entry created by the auditor. (The hash of the script is truncated for demonstration
purposes.)

Figure 6.7: The logs generated by the browser and the database entry created by the auditor
for multiple call stacks

142

present for this url and field, and if it is, it doesn’t store the log. So, this reduces the number

of logs to unique agents acting in the page (i.e. scripts, extensions, etc).

With 100 scripts running in the page and accessing the password field, the auditor requires

1.34 MB space to store the logs and 28.19 seconds time to parse the complete log. The

time taken is vastly sandbagged by the time taken to insert individual agents into the sqlite

database, which can be optimized by using bulk insert methods. The unlikely scenario of

batch processing of all the logs for the hour, the time taken is vastly reduced to 0.35 seconds

(351.21 ms). As 3600 seconds of execution logs can be parsed in 28.19 seconds(a ratio of

127:1), the auditor can keep up with the logs generated by the browser in real-time. This is

important as the browser logs aren’t permanent and should be parsed in real-time to avoid

losing the logs in case of memory issues or browser crashes.

6.6 Discussion

Widespread deployment The implementation here, in contrast to the secure browser

channel [59], requires changes to the websites. Future work can look into how to help websites

to adopt this mechanism without requiring much effort. This could be a framework or a

microservice that could be deployed in the website’s server, which can be easily deployed

alongside the main website through containerization. We also explore a trusted third-party

architecture, which minimizes the functions of the website, but still requires some changes.

The trusted thrid-party architecture could be a good starting point for the widespread

deployment, even though this introduces aspects of trust that need to researched further.

Extension of audit capabilities This work only looks into sensitive fields and their access

in the browser. There are other mechanisms such as downloading and deploying malware, etc

that can be a mechanism of attack in the browser. So, recording most actions that happen in

the browser can be a good mechanism to keep track of the provenance of the browser. This

extended provenance can be used in the future to keep track of attacks that are unknown

right now but are discovered in the future. So, future work can look into extending the audit

capabilities of this system with more adversaries and provenance information.

143

Analyzing full scripts When we were analyzing data during finding the cause of attack,

we only used the identifier of the scripts and where they originated from. This successfully

identifies the script that is responsible for the access, possibly indicating that this script is

malicious. However, there is much more information that can be gathered from the analysis of

whole scripts that are saved. There are challenges in this approach, as this requires navigating

through different obfuscation, minification, and other techniques that scripts could use to

hide their true purpose. Future work can look into analyzing these full scripts to get more

fine-grained information about the attack.

6.7 Conclusion

In this work, we proposed a mechanism that utilizes nonce-based password replacement

mechanism to detect and audit password theft. We utilized the nonce-based password

replacement method, and the intuition that the usage of nonces can help identify an attack.

We also utilized the browser audit logs to identify the scripts and extensions responsible

for accessing sensitive information. We identified different design decisions that need to be

made to implement the system, and reasoned about the trade-offs in the design decisions.

We implemented proof of concept system in the Firefox browser and then evaluated the

performance impact in the system. Through our evaluation, we show that the system does

not have a significant performance impact in terms of time and storage overhead making it

possible to deploy in real-world scenarios even in memory and computationally constrained

devices. We also show that the system is able to consume the logs in real-time without

getting overwhelmed.

144

Chapter 7

Conclusion and Future Works

In this dissertation, we utilized the concept that the password manager could be supported

better by standardizing interactions for different authentication scenarios. We identified

scenarios in which password managers could be supported better by standardizing interactions

for different authentication scenarios. By making different parts of web authentication aware

of the password manager and introducing standardized interfaces, we were able to improve

the usability and security of password-based authentication.

In Chapter 3, we developed a PCP language that websites and password managers can

use to support the generation of compliant passwords. With websites better supporting

the generation feature of the password managers using the PCP language, we introduced

automatic generation of PCP-compliant passwords. We hope that our work will signal to

both communities that adopting a PCP language has tangible benefits. For websites, it

allows them to unify their PCP specification and checking, allowing changes to the PCP

file to automatically update how checking happens on both the client and server. For

password managers, it not only improves the usability and utility of password management

but also supports opinionated generation algorithms (e.g., mobile-aware generation [63],

security-focused generation [124]), which would otherwise frequently generate non-compliant

passwords. Utilizing a user study, we demonstrated that our PCP language is easy to author

and understand, even for complex policies.

Moving from usability, in Chapter 4, we explored how password managers can help improve

security of password entry in the browser. We identified a strong threat model for password

145

exfiltration and explored five different designs to secure password entry. We implemented

the most secure design, which involves injecting a fake password into the web page and then

replacing it with the real password in the browser. We demonstrated that this design can stop

credential exfiltration by malicious client-side scripts and browser extensions. On evaluation,

we find that our design works with 97% of the Alexa top 1000 websites improving the security

of credential entry on the vast majority of websites. For rest of the websites, it is easy to

automatically detect compatibility issues and not use our secure autofill API, preventing any

functionality regressions.

To show that our secure browser channel is not just limited to passwords, in Chapter 5,

we extended our work to FIDO2 authentication. We show that similar to passwords, FIDO2

authentication can also be secured against local adversaries. We implemented the secure

browser channel for FIDO2 authentication and demonstrated that it can stop credential

exfiltration by malicious client-side scripts and browser extensions. Even though these attacks

are not common currently, it is important to proactively tackle local attacks due to the

significant threat posed by XSS, malicious extensions, and malware. Delaying the response

until after such attacks occur puts users at risk unnecessarily.

Finally, we show that the secure browser channel can be used for more than just securing

password entry. In Chapter 6, we demonstrate how the secure browser channel can be used to

detect and audit attacks. Utilizing the credential swap mechanism introduced in Chapter 4

and Chapter 5, we were able to implement a server architecture capable of detecting credential

theft and then triggering audit mechanisms to identify the root cause of the attack. Utilizing

the browser audit logs and sensitive input elements, we were able to find the agents that

could be responsible for the attack. We show that we can do this without much performance

overhead in the browser.

With these works, we show that password manager aware authentication can improve

existing security and usability issues in authentication systems. We hope that our work will

inspire further research in this area and that the secure browser channel will be adopted by

password managers and websites to improve the security and usability of web authentication.

146

7.1 Lessons Learned

Below, we discuss key lessons learned from our research over the course of this dissertation.

7.1.1 Password managers as an opportunity

The major takeaway of the whole dissertation is that password managers are a great

opportunity for improving the security and usability of web authentication. Currently,

password managers are used for generation, storage, and autofill of passwords, but they can

do more than that. Even in the current condition, password managers are central in

authentication and has been shown to secure users from various threats by providing them

with strong, unique passwords. By making the browser and the server aware of the password

manager, we can further improve the security and usability of web authentication. By

leveraging the use of password managers, we can improve the security and usability of web

authentication without requiring users to change their behavior. We see that password

managers can be used to generate secure compliant passwords, secure the entry of passwords

more than manually entering them, and detect and audit attacks in the browser. With more

research, password managers can see more use cases, and act as a central point of secure

authentication for users.

7.1.2 No standard PCP

In chapter 3, we found that there is no standard PCP that websites follow. With the dataset

we collected, that expands across geographical regions and huge range of ranks, we found that

there is no standard PCP that websites follow. Even though NIST has guidelines on how to

create a PCP, websites do not follow them. In terms of length requirements, which we found

the most important for password strength, websites have a wide range of requirements. Some

websites require a minimum of 6 characters, while others require a minimum of 20 characters.

There is a vast distribution for character and composition requirements of password policies.

There isn’t even a standard definition for the "symbols" character set. Some websites consider

only a few characters as symbols, while others consider a wide range of characters as symbols.

This, no standard PCP, is a huge source of user frustration. Deployment of our PCP should

147

help websites to standardize their PCP and make it easier for users to generate compliant

passwords.

7.1.3 Humans generate passwords differently than machines

In chapter 3, with the insights of previous work about password datasets, we saw that humans

from different geographical regions have different preferences for passwords. PCPs are usually

enforced by websites to force humans to select stronger passwords. We found that using the

PCPs enforced by websites, half of randomly generated passwords are good enough against

offline attacks. But for randomly generated passwords, PCPs actually make the password

search space smaller, making the passwords weaker. Taking human preferences into account,

almost all the passwords aren’t good enough against offline attacks. So, there’s a paradoxical

situation where PCPs are enforced to make passwords stronger, but they make randomly

generated passwords weaker and don’t make human-generated passwords strong enough.

The multi-rule PCP that we found to be supported by some websites is a good compromise

to force humans to make stronger passwords and not make randomly generated passwords

weaker.

7.1.4 Misdirected security concerns

In chapter 4, we found that some websites are concerned about the security of submitted forms.

So, they introduce different mechanisms such as encryption, hashing, and encoding to secure

the form data before being submitted to the server. This shows that websites are concerned

about the security of the data being submitted to the server. Previous research has shown

that TLS is pretty secure against eavesdropping [93, 5, 94, 95], so data in tranmission isn’t

as big of a concern. However, as the actual process of manipulating data before submission is

done by scripts, the process of the manipulation in itself is more vulnerable to attacks. This

points towards a misdirected concern for security, that websites are more concerned about

the data being submitted to the server than the data being manipulated by scripts before

submission.

148

7.1.5 Need to secure against local attacks

Throughout the work, we see that these local attacks within the browser such as XSS attacks

and malicious extensions are very much feasible. XSS attacks are in the OWASP top 10 list

of web application security risks [132], with huge amounts of CVEs being reported every year.

In chapters 4 and 5, we show that malicious extensions are also a huge threat to the security

of the browser. There are a lot of extensions currently in the Chrome Web Store, that can

exfiltrate credentials from the browser. Research has shown that users do not pay much

attention to the permissions that they give to the extensions [86]. This shows that these

attacks are very much feasible and need to be secured against. It is difficult to measure how

much these attacks are being executed currently, but it is important to proactively secure

against these attacks before they become rampant.

7.1.6 Need for provenance system in the browser

In chapter 6, we implement a system that is able to detect and audit attacks on password

credentials in the browser. We show that it is feasible to store this data in the local system

and analyze it to find the root cause of the attack. However, this system currently works

against identified attacks. If there’s a provenance system in the browser that can compactly

record the actions in the browser, it could be easier to identify other attack vectors that are

not currently identified.

7.2 Future Works

With the research conducted in this dissertation, we have laid the groundwork for improving

the security and usability of password-based authentication. There are several avenues for

future work that can build on the work presented in this dissertation.

7.2.1 Further improving password generation

In our work with the PCP language in Chapter 3, we have shown that it is possible to

standardize and enhance password generation processes. The PCP language provides a good

149

and easy way to describe password policies and generate compliant passwords. In our current

application, we propose websites using the PCP language to generate compliant passwords.

We looked at restrictions on the PCP due to website policies and dictated by other policies.

PCPs can also be dictated by user requirements rather than website requirements too.

Users have to input passwords in many different kinds of devices with various input modalities.

And research has shown that having to input passwords into different devices impacts users

decision on using a password generator. For example, users’ passwords for streaming services

are often entered on smart TVs, which have different input modalities than a computer. Input

of passwords in different devices is a major pain point for the users. Future work should

explore the different types of devices that users input their passwords in. This information

helps guide the devices requiring immediate attention for password generation. Furthermore,

user studies can be conducted to understand the pain points and character set preferences

for users in different input modalities. With this information at hand, password generation

can be tailored to the user’s input modality, making it easier for the user to generate and

input passwords.

On the other hand, users have other preferences at hand. Such as users preferring

passwords to not contain characters that can easily be confused with each other (e.g., ‘1’ and

‘l’). Future work should explore these human driver requirements and how to incorporate

these preferences into the PCP langauge and password generation.

Even though we have shown that the PCP language is easy to author and understand,

websites maintainers still have to write the PCP language. This is the biggest bottleneck

in the process of automatic password generation support. Future work can explore how to

automatically extract PCPs from websites, utilizing descriptions in the websites, the javascript

used to validate the passwords, and other black box techniques. This way, the creation of

PCP can be automated and websites can easily support automatic password generation.

7.2.2 Securing manual entry of passwords

In Chapter 4, we explored how password managers can help improve security of password

entry in the browser. Future work can explore securing password entry when users manually

150

insert them. The browser can provide a secure credential entry mode, such as a special entry

interface, where users can securely insert their credentials.

Research needs to be done on multiple ends for this to be successful. Firstly, as extensions

are able to mimic most of the browser’s behavior, users need to be able to know that this

entry interface is safe. For this, research needs to be done on how to make users aware of

this functionality and how to encourage them to use it. Secondly, research needs to be done

on how to design the password entry mode such that it is clear when it is activated.

7.2.3 Enhanced Application Support for Secure Browser Channels

The introduced defense strategy is applicable to additional APIs that handle sensitive data

without depending on JavaScript within the browser. By creating a secure communication

channel for the exchange of request and response parameters, the integrity and confidentiality

of data transmitted via these APIs can be safeguarded against harmful browser extensions.

Web servers can signal their desire to employ sbc-FIDO2 through standardized headers

designed to block unauthorized browser extensions from accessing sensitive data. Alternatively,

web servers might choose not to use these headers if they prefer to allow extensions access to

the data. This approach grants web servers the flexibility to tailor their use of the mechanism

to fit various requirements.

This defense approach could enhance the security of numerous existing APIs that manage

sensitive data external to the browser. For example, the Clipboard API enables web

applications to handle clipboard commands and interact seamlessly with the system

clipboard. The File System Access API offers functionalities for reading, writing, and

managing files, whereas the File API provides access to file contents. The File and Directory

Entries API allows web applications to simulate a local file system, making it possible to

easily navigate and manage files. Moreover, the Geolocation API permits users to share their

location with web applications, and the Media Capture and Streams API supports the

smooth capture and streaming of audio and video media.

In addition, several experimental browser APIs can be secured against browser extensions

without direct JavaScript interaction. These include Web Bluetooth (for connecting to

Bluetooth Low Energy devices), Barcode Detection (for recognizing barcodes in images),

151

WebOTP (for verifying phone numbers using one-time passwords), Web NFC (for NFC

data exchange), HID (for interfacing with human input/output devices), WebUSB (for

accessing services of non-standard USB-compatible devices), MediaStream Image Capture

(for capturing images and videos), and Contact Picker (for selecting and sharing limited

contact information).

Further APIs could also benefit from this protective measure. The main point is that

by implementing this proposed defense strategy, web servers can significantly improve the

security of data transfers and defend against unauthorized manipulation or access by browser

extensions, thus ensuring the integrity and confidentiality of sensitive data.

7.2.4 Usability study of security indicators

Not much is known about how users perceive signals about security. Systems like Fidelius [51]

utilize physical lights as security indicator, and systems like Dynamic Security Skins [45]

visual software indicators to indicate to the user that the security feature is enabled. Similar

indicator can be used to indicate to the user that the secure browser channel is enabled. But

users are known to ignore these indicators(like the padlock icon in the browser), and there

isn’t a good understanding of how to design these indicators to make them more noticeable.

Future work can explore how to design these indicators to make them more noticeable

and how to make users more aware of these indicators. User studies can be conducted to

understand how users perceive different security indicators and how to design them to make

them more noticeable. UX elements such as color, size, and position can be explored to make

these indicators more noticeable in the browser, the password manager, and/or the operating

system. Similar research can be done for supplementary hardware indicators, such as lights

on the keyboard or 2fa devices.

7.2.5 Stronger threats for credentials

In chapters 4 and 5, we explored the threat model for password exfiltration. The threats

we specifically looked at were client-side scripts, the webRequest API, and during network

transmission. However, there are stronger threats that are able to exfiltrate credentials.

152

Threats such as a completely compromised browser, malware, and software and harware

keyloggers are able to exfiltrate credentials. These threats are strictly stronger than the

threats that we consider, but we do not consider them due to the difficulty of executing these

attacks. But nonetheless, these threats are still possible and should be considered in future

work. It shouldn’t be left for when these threats become viable, but rather proactively tackle

these threats before they become viable. For completely compromised systems, future work

can explore utilizing secure enclaves to secure the password entry process. An operating

system based secure credential entry channel, where the operating system in a secure enclave

handles authentication centrally, can be a good solution against a stronger threat mode.

7.2.6 Trusted extensions in the browser

In Chapter 4, one of the biggest concern to improve security was because the password

manager had the same abilities as any malicious extensions. Users already put in a lot of

trust in the password managers that they use to store their credentials and other sensitive

data. Also, there are a limited number of password managers in use currently. Future work

can explore a trust hierarchy for extensions in the browser, so that password managers are

trusted more and have more(or exclusive) capabilities than other extensions. This way, the

password manager can have more capabilities to secure the password entry process and other

sensitive data in the browser.

7.2.7 Stronger audit mechanisms

In Chapter 6, we explored how to detect and audit attacks. On the client side, we were

able to detect candidate scripts and extensions that could be responsible for the attack. In

this research, we limited our scope to password based attacks. As we proposed, the secure

browser channel can be extended to other applications. Future work can explore how to

extend the secure browser channel to other applications and how to detect and audit attacks

in these applications. Future research can explore further mechanisms to accurately identify

attack mechanisms. Firstly, if there’s much obfuscation in the script, it is hard to accurately

identify the scope of it. Future research can explore how to accurately identify the attack

153

even if the script is obfuscated. A complete provenance mechanism in the browser handling

most events, in addition to a consolidated browser secure channel for different APIs, could

provide a comprehensive audit mechanism. Secondly, future research can look into static

analysis methods to identify attacks while the attack is happening than afterwards. Also,

future research can explore how to accurately predict the type and scope of an attack with

the data from multiple users, while still maintaining the privacy of the users.

154

Bibliography

[1] (2013). Krypton | let’s make two-factor easy & secure. https://krypt.co/. 23

[2] Adams, A. and Sasse, M. A. (1999). Users are not the enemy. Communications of the

ACM, 42(12):40–46. 16

[3] Akerlof, G. A. and Shiller, R. J. (2015). Phishing for phools. In Phishing for Phools.

Princeton University Press. 17, 68

[4] Aldiabat, K. M. and Le Navenec, C.-L. (2018). Data saturation: The mysterious step in

grounded theory methodology. The Qualitative Report, 23(1):245–261. 29

[5] AlFardan, N., Bernstein, D. J., Paterson, K. G., Poettering, B., and Schuldt, J. C. (2013).

On the security of {RC4} in {TLS}. In 22nd USENIX Security Symposium (USENIX

Security 13), pages 305–320. 148

[6] Alkaldi, N. and Renaud, K. (2016). Why do people adopt, or reject, smartphone password

managers? EuroUSEC. 1

[7] Allen, J., Yang, Z., Landen, M., Bhat, R., Grover, H., Chang, A., Ji, Y., Perdisci, R., and

Lee, W. (2020). Mnemosyne: An effective and efficient postmortem watering hole attack

investigation system. In Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security, pages 787–802. 24, 132

[8] Almeshekah, M. H., Gutierrez, C. N., Atallah, M. J., and Spafford, E. H. (2015).

Ersatzpasswords: Ending password cracking and detecting password leakage. In Proceedings

of the 31st Annual Computer Security Applications Conference, pages 311–320. 117

[9] Alqubaisi, F., Wazan, A. S., Ahmad, L., and Chadwick, D. W. (2020). Should we rush to

implement password-less single factor FIDO2 based authentication? In 2020 12th Annual

Undergraduate Research Conference on Applied Computing (URC), pages 1–6. IEEE. 22

155

https://krypt.co/

[10] Alsaffar, M., Aljaloud, S., Mohammed, B. A., Al-Mekhlafi, Z. G., Almurayziq, T. S.,

Alshammari, G., and Alshammari, A. (2022). Detection of web cross-site scripting (xss)

attacks. Electronics, 11(14):2212. 105

[11] Amadeo, R. (2014). Adware vendors buy chrome extensions to send ad- and malware-filled

updates. 105

[12] Anand, M. K., Bowers, S., and Ludäscher, B. (2010). Provenance browser: Displaying

and querying scientific workflow provenance graphs. In 2010 IEEE 26th International

Conference on Data Engineering (ICDE 2010), pages 1201–1204. IEEE. 24

[13] Angelogianni, A. (2018). Analysis and implementation of the FIDO protocol in a trusted

environment. Master’s thesis, University of Piraeus. 23

[14] Aurigemma, S., Mattson, T., and Leonard, L. (2017). So much promise, so little use:

What is stopping home end-users from using password manager applications? 1

[15] Awake Security (2022). Discovery of a massive, criminal surveillance

campaign. https://awakesecurity.com/blog/the-internets-new-arms-dealers\

-malicious-domain-registrars/. 19, 93

[16] Bakry, T. H. and Mysk, T. (2020). Precise location information

leaking through system pasteboard. https://www.mysk.blog/2020/02/24/

precise-location-information-leaking-through-system-pasteboard/. Accessed:

2020-06-13. 17, 20

[17] Bangor, A., Kortum, P. T., and Miller, J. T. (2008). An empirical evaluation of the

system usability scale. Intl. Journal of Human–Computer Interaction, 24(6):574–594. 41

[18] Bates, A., Tian, D. J., Butler, K. R., and Moyer, T. (2015). Trustworthy {Whole-System}

provenance for the linux kernel. In 24th USENIX Security Symposium (USENIX Security

15), pages 319–334. 24

[19] Bates, D. (2021). Proposal: Html passwordrules attribute. https://github.com/

whatwg/html/issues/3518. 15, 55

156

https://awakesecurity.com/blog/the-internets-new-arms-dealers\-malicious-domain-registrars/
https://awakesecurity.com/blog/the-internets-new-arms-dealers\-malicious-domain-registrars/
https://www.mysk.blog/2020/02/24/precise- location-information-leaking-through-system- pasteboard/
https://www.mysk.blog/2020/02/24/precise- location-information-leaking-through-system- pasteboard/
https://github.com/whatwg/html/issues/3518
https://github.com/whatwg/html/issues/3518

[20] Bhargav-Spantzel, A. (2014). Trusted execution environment for privacy preserving

biometric authentication. Intel Technology Journal, 18(4). 23

[21] Bonneau, J., Herley, C., van Oorschot, P. C., and Stajano, F. (2012). The quest to

replace passwords: a framework for comparative evaluation of web authentication schemes.

In Proceedings of the 33rd IEEE Symposium on Security and Privacy, pages 553–567. IEEE,

IEEE. 1, 26, 69, 79

[22] Brinkmann, M. (2019). Hoverzoom’s malware controversy and imagus alternative -

ghacks tech news. 105

[23] Brooke, J. (1996). Sus: a “quick and dirty‘usability. Usability evaluation in industry,

189(3). 38

[24] Cato Networks (2022). Threat intelligence feeds and endpoint protection

systems fail to detect 24 malicious chrome extensions. https://www.

catonetworks.com/blog/threat-intelligence-feeds-and-endpoint-\

protection-systems-fail-to-detect-24\-malicious-chrome-extensions/. 19,

93

[25] Chakraborty, D. and Bugiel, S. (2019). simFIDO: FIDO2 user authentication with

simTPM. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, pages 2569–2571. 23

[26] Chang, D., Mishra, S., Sanadhya, S. K., and Singh, A. P. (2017). On making U2F

protocol leakage-resilient via re-keying. IACR Cryptol. ePrint Arch., 2017:721. 22

[27] Chrome, G. (2023). Chrome.webrequest. https://developer.chrome.com/docs/

extensions/reference/webRequest/#event-onBeforeRequest. Accessed: 2023-05-03.

xiv, 64

[28] Chromium (2011). 91191 - chromium - webrequest: Access to post data in

‘onbeforerequest‘. https://bugs.chromium.org/p/chromium/issues/detail?id=91191.

Accessed: 2023-05-03. 65, 76

157

https://www.catonetworks.com/blog/threat-intelligence-feeds-and-endpoint-\protection-systems-fail-to-detect-24\-malicious-chrome-extensions/
https://www.catonetworks.com/blog/threat-intelligence-feeds-and-endpoint-\protection-systems-fail-to-detect-24\-malicious-chrome-extensions/
https://www.catonetworks.com/blog/threat-intelligence-feeds-and-endpoint-\protection-systems-fail-to-detect-24\-malicious-chrome-extensions/
https://developer.chrome.com/docs/extensions/reference/webRequest/#event-onBeforeRequest
https://developer.chrome.com/docs/extensions/reference/webRequest/#event-onBeforeRequest
https://bugs.chromium.org/p/chromium/issues/detail?id=91191

[29] Chromium (2023a). The activetab permission. https://developer.chrome.com/docs/

extensions/mv3/manifest/activeTab/. Accessed: 2023-05-03. 66

[30] Chromium (2023b). chrome.declarativenetrequest. https://developer.chrome.com/

docs/extensions/reference/declarativeNetRequest/. Accessed: 2023-05-03. 66

[31] Chromium (2023c). chrome.scripting. https://developer.chrome.com/docs/

extensions/reference/scripting/. Accessed: 2023-05-03. 66

[32] Chromium (2023d). chrome.webrequest. https://developer.chrome.com/docs/

extensions/reference/webRequest/. Accessed: 2023-05-03. 66

[33] Chromium (2023e). Content scripts. https://developer.chrome.com/docs/

extensions/mv3/content_scripts/. Accessed: 2023-05-03. 66

[34] Chromium (2023f). Manifest file format. https://developer.chrome.com/docs/

extensions/mv3/manifest/. Accessed: 2023-05-03. 66

[35] Ciampa, M. (2013). A comparison of user preferences for browser password managers.

Journal of Applied Security Research, 8(4):455–466. 21

[36] Cimpanu, C. (2018). Mega.nz chrome extension caught stealing passwords,

cryptocurrency private keys. 105

[37] Ciolino, S., Parkin, S., and Dunphy, P. (2019). Of two minds about two-factor:

Understanding everyday FIDO U2F usability through device comparison and experience

sampling. In Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019). 22

[38] Condé, R. C., Maziero, C. A., and Will, N. C. (2018). Using Intel SGX to protect

authentication credentials in an untrusted operating system. In 2018 IEEE Symposium on

Computers and Communications (ISCC), pages 00158–00163. IEEE. 23

[39] CVEdetails (2024). Security vulnerabilities, cves, xss, cross site scripting published in

january 2024. 18

158

https://developer.chrome.com/docs/extensions/mv3/manifest/activeTab/
https://developer.chrome.com/docs/extensions/mv3/manifest/activeTab/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/extensions/reference/scripting/
https://developer.chrome.com/docs/extensions/reference/scripting/
https://developer.chrome.com/docs/extensions/reference/webRequest/
https://developer.chrome.com/docs/extensions/reference/webRequest/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/manifest/
https://developer.chrome.com/docs/extensions/mv3/manifest/

[40] Dambra, S., Sanchez-Rola, I., Bilge, L., and Balzarotti, D. (2022). When sally met

trackers: Web tracking from the users’ perspective. In 31st USENIX Security Symposium

(USENIX Security 22), pages 2189–2206. 17

[41] Das, A., Bonneau, J., Caesar, M., Borisov, N., and Wang, X. (2014). The tangled web

of password reuse. In Proceedings of the 22nd Network and Distributed System Security

Symposium, volume 14, pages 23–26. Internet Society. 26

[42] Das, S., Dingman, A., and Camp, L. J. (2018). Why johnny doesn’t use two factor a

two-phase usability study of the FIDO U2F security key. In International Conference on

Financial Cryptography and Data Security, pages 160–179. Springer. 22

[43] Dauterman, E., Corrigan-Gibbs, H., Mazières, D., Boneh, D., and Rizzo, D. (2019).

True2f: Backdoor-resistant authentication tokens. In 2019 IEEE Symposium on Security

and Privacy (SP), pages 398–416. IEEE. 22

[44] Dell’Amico, M., Michiardi, P., and Roudier, Y. (2010). Password strength: An empirical

analysis. In 2010 Proceedings IEEE INFOCOM, pages 1–9. IEEE. 26

[45] Dhamija, R. and Tygar, J. D. (2005). The battle against phishing: Dynamic security

skins. In Proceedings of the 2005 symposium on Usable privacy and security, pages 77–88.

87, 152

[46] Ding, H., Zhai, J., Deng, D., and Ma, S. (2023). The case for learned provenance graph

storage systems. In 32nd USENIX Security Symposium (USENIX Security 23), pages

3277–3294. 122

[47] Dionysiou, A. and Athanasopoulos, E. (2022). Lethe: Practical data breach detection

with zero persistent secret state. In 2022 IEEE 7th European Symposium on Security and

Privacy (EuroS&P), pages 223–235. IEEE. 23, 117

[48] Dmitrienko, A., Liebchen, C., Rossow, C., and Sadeghi, A.-R. (2014). On the (in) security

of mobile two-factor authentication. In Financial Cryptography and Data Security: 18th

International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised

Selected Papers 18, pages 365–383. Springer. 79

159

[49] Duan, R., Alrawi, O., Kasturi, R. P., Elder, R., Saltaformaggio, B., and Lee, W. (2020).

Towards measuring supply chain attacks on package managers for interpreted languages.

arXiv preprint arXiv:2002.01139. 18, 59, 105

[50] Duo and Cisco (2023). Crxcavator chrome extension permissions. "https://crxcavator.

io/". 93

[51] Eskandarian, S., Cogan, J., Birnbaum, S., Brandon, P. C. W., Franke, D., Fraser, F.,

Garcia, G., Gong, E., Nguyen, H. T., Sethi, T. K., et al. (2019). Fidelius: Protecting user

secrets from compromised browsers. In 2019 IEEE Symposium on Security and Privacy

(SP), pages 264–280. IEEE. 23, 152

[52] Fagan, M., Albayram, Y., Khan, M. M. H., and Buck, R. (2017). An investigation into

users’ considerations towards using password managers. Human-centric computing and

information sciences, 7(1):1–20. 59

[53] Fahl, S., Harbach, M., Oltrogge, M., Muders, T., and Smith, M. (2013). Hey, you, get

off of my clipboard. In International Conference on Financial Cryptography and Data

Security, pages 144–161. Springer. 17, 20

[54] Fass, A., Somé, D. F., Backes, M., and Stock, B. (2021). Doublex: Statically detecting

vulnerable data flows in browser extensions at scale. In Proceedings of the 2021 ACM

SIGSAC Conference on Computer and Communications Security, pages 1789–1804. 24

[55] Florencio, D. and Herley, C. (2007). A large-scale study of web password habits. In

Proceedings of the 16th International Conference on World Wide Web, pages 657–666.

ACM, ACM Press. 16, 26, 43

[56] Florêncio, D. and Herley, C. (2010). Where do security policies come from? In Proceedings

of the Sixth Symposium on Usable Privacy and Security, pages 1–14. 16, 27, 28, 42, 43, 56

[57] Florêncio, D., Herley, C., and Van Oorschot, P. C. (2014). An administrator’s guide to

internet password research. In 28th Large Installation System Administration Conference

(LISA14), pages 44–61. 35, 43, 45, 56

160

"https://crxcavator.io/"
"https://crxcavator.io/"

[58] Gautam, A., Lalani, S., and Ruoti, S. (2022). Improving password generation through

the design of a password composition policy description language. In Proceedings of the

18th Symposium on Usable Privacy and Security. USENIX. 117

[59] Gautam, A., Yadav, T. K., Seamons, K., and Ruoti, S. (2024). Passwords are meant to

be secret: A practical secure password entry channel for web browsers. 106, 108, 109, 131,

133, 143

[60] Google (2024a). https://chromedevtools.github.io/devtools-protocol/. 108

[61] Google (2024b). Chrome devtools : chrome for developers. https://developer.

chrome.com/docs/devtools. 107

[62] Grassi, P. A., Fenton, J. L., Newton, E. M., Perlner, R. A., Regenscheid, A. R., Burr,

W. E., Richer, J. P., Lefkovitz, N. B., Danker, J. M., Choong, Y., et al. (2016). Nist

special publication 800-63b: Digital identity guidelines. National Institute of Standards

and Technology (NIST), 27. 17, 54

[63] Greene, K. K., Kelsey, J. M., Franklin, J. M., et al. (2016). Measuring the usability

and security of permuted passwords on mobile platforms. US Department of Commerce,

National Institute of Standards and Technology. 57, 145

[64] Guan, J., Li, H., Ye, H., and Zhao, Z. (2022). A formal analysis of the fido2 protocols. In

Computer Security–ESORICS 2022: 27th European Symposium on Research in Computer

Security, Copenhagen, Denmark, September 26–30, 2022, Proceedings, Part III, pages 3–21.

Springer. 91, 93, 94

[65] Guirat, I. B. and Halpin, H. (2018). Formal verification of the W3C web authentication

protocol. In Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the

Science of Security, pages 1–10. 21

[66] Han, X., Pasquier, T., Bates, A., Mickens, J., and Seltzer, M. (2020). Unicorn: Runtime

provenance-based detector for advanced persistent threats. arXiv preprint arXiv:2001.01525.

24

161

https://chromedevtools.github.io/devtools-protocol/
https://developer.chrome.com/docs/devtools
https://developer.chrome.com/docs/devtools

[67] Hannousse, A., Yahiouche, S., and Nait-Hamoud, M. C. (2022). Twenty-two years since

revealing cross-site scripting attacks: a systematic mapping and a comprehensive survey.

arXiv preprint arXiv:2205.08425. 105

[68] Hao, F. and van Oorschot, P. C. (2022). Sok: Password-authenticated key exchange–

theory, practice, standardization and real-world lessons. In Proceedings of the 2022 ACM

on Asia Conference on Computer and Communications Security, pages 697–711. 71

[69] Hassan, W. U., Guo, S., Li, D., Chen, Z., Jee, K., Li, Z., and Bates, A. (2019). Nodoze:

Combatting threat alert fatigue with automated provenance triage. In network and

distributed systems security symposium. 24

[70] Hassan, W. U., Noureddine, M. A., Datta, P., and Bates, A. (2020). Omegalog: High-

fidelity attack investigation via transparent multi-layer log analysis. In Network and

distributed system security symposium. 24

[71] Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and Schwenk, J. (2012). Scriptless

attacks: stealing the pie without touching the sill. In Proceedings of the 2012 ACM

conference on Computer and communications security, pages 760–771. 123

[72] Helms, K. (2020). Google pulls 49 cryptocurrency wallet browser extensions found

stealing private keys – security bitcoin news. 105

[73] Herley, C. (2009). So long, and no thanks for the externalities: the rational rejection of

security advice by users. In Proceedings of the 2009 workshop on New security paradigms

workshop, pages 133–144. ACM. 87

[74] Horsch, M., Schlipf, M., Braun, J., and Buchmann, J. (2016). Password requirements

markup language. In Australasian Conference on Information Security and Privacy, pages

426–439. Springer. 15, 28, 55

[75] Hossain, M. N., Milajerdi, S. M., Wang, J., Eshete, B., Gjomemo, R., Sekar, R., Stoller,

S., and Venkatakrishnan, V. (2017). {SLEUTH}: Real-time attack scenario reconstruction

from {COTS} audit data. In 26th USENIX Security Symposium (USENIX Security 17),

pages 487–504. 24

162

[76] House, F. (2021). Freedom house (fh) freedom of the press report. https://

freedomhouse.org/reports/publication-archives. Accessed: 2021-05-01. 27

[77] Hu, K. and Zhang, Z. (2016). Security analysis of an attractive online authentication

standard: Fido uaf protocol. China Communications, 13(12):189–198. 21, 91, 94

[78] Huaman, N., Amft, S., Oltrogge, M., Acar, Y., and Fahl, S. (2021). They would do better

if they worked together: The case of interaction problems between password managers and

websites. In 2021 2021 IEEE Symposium on Security and Privacy (SP), pages 1626–1640,

Los Alamitos, CA, USA. IEEE Computer Society. 20, 26

[79] Jacomme, C. and Kremer, S. (2018). An extensive formal analysis of multi-factor

authentication protocols. In 2018 IEEE 31st Computer Security Foundations Symposium

(CSF), pages 1–15. IEEE. 22

[80] Jakkal, V. (2024). The passwordless future with microsoft.

https://www.microsoft.com/en-us/security/blog/2021/09/15/

the-passwordless-future-is-here-for-your-microsoft-account/. 11

[81] Jarecki, S., Krawczyk, H., and Xu, J. (2018). Opaque: an asymmetric pake protocol

secure against pre-computation attacks. In Advances in Cryptology–EUROCRYPT 2018:

37th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part III 37, pages 456–486.

Springer. 71

[82] Ji, Y., Lee, S., Downing, E., Wang, W., Fazzini, M., Kim, T., Orso, A., and Lee, W.

(2017). Rain: Refinable attack investigation with on-demand inter-process information

flow tracking. In Proceedings of the 2017 ACM SIGSAC conference on computer and

communications security, pages 377–390. 24

[83] Jia, Z., Cui, X., Liu, Q., Wang, X., and Liu, C. (2018). Micro-honeypot: using browser

fingerprinting to track attackers. In 2018 IEEE Third International Conference on Data

Science in Cyberspace (DSC), pages 197–204. IEEE. 25

163

https://freedomhouse.org/reports/publication-archives
https://freedomhouse.org/reports/publication-archives
https://www.microsoft.com/en-us/security/blog/2021/09/15/the-passwordless-future-is-here-for-your-microsoft-account/
https://www.microsoft.com/en-us/security/blog/2021/09/15/the-passwordless-future-is-here-for-your-microsoft-account/

[84] Juels, A. and Rivest, R. L. (2013). Honeywords: Making password-cracking detectable.

In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security, pages 145–160. 23, 117

[85] Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., and Paxson, V. (2014).

Hulk: Eliciting malicious behavior in browser extensions. In 23rd {USENIX} security

symposium ({USENIX} Security 14), pages 641–654. 59, 93, 105

[86] Kariryaa, A., Savino, G.-L., Stellmacher, C., and Schöning, J. (2021). Understanding

users’ knowledge about the privacy and security of browser extensions. In Proceedings of

the Seventeenth Symposium on Usable Privacy and Security. USENIX. 15, 149

[87] Karlof, C., Tygar, J. D., and Wagner, D. A. (2009). Conditioned-safe ceremonies and a

user study of an application to web authentication. In NDSS. 87

[88] Karole, A., Saxena, N., and Christin, N. (2011). A comparative usability evaluation of

traditional password managers. In Information Security and Cryptology-ICISC 2010: 13th

International Conference, Seoul, Korea, December 1-3, 2010, Revised Selected Papers 13,

pages 233–251. Springer. 21

[89] Kaur, J., Garg, U., and Bathla, G. (2023). Detection of cross-site scripting (xss) attacks

using machine learning techniques: a review. Artificial Intelligence Review, pages 1–45.

105

[90] Komanduri, S., Shay, R., Kelley, P. G., Mazurek, M. L., Bauer, L., Christin, N., Cranor,

L. F., and Egelman, S. (2011). Of passwords and people: measuring the effect of password-

composition policies. In Proceedings of the sigchi conference on human factors in computing

systems, pages 2595–2604. 16, 53

[91] Korir, M., Parkin, S., and Dunphy, P. (2022). An empirical study of a decentralized

identity wallet: Usability, security, and perspectives on user control. In Proceedings of the

18th Symposium on Usable Privacy and Security, Boston, MA. USENIX. 66

[92] Kovacs, E. (2019). Researcher earns $10,000 for another xss flaw in yahoo mail. 110

164

[93] Krawczyk, H., Paterson, K. G., and Wee, H. (2013). On the security of the tls protocol:

A systematic analysis. In Annual Cryptology Conference, pages 429–448. Springer. 148

[94] Kumari, N. and Mohapatra, A. (2022). A comprehensive and critical analysis of tls 1.3.

Journal of Information and Optimization Sciences, 43(4):689–703. 148

[95] Lee, H., Kim, D., and Kwon, Y. (2021). Tls 1.3 in practice: How tls 1.3 contributes to

the internet. In Proceedings of the Web Conference 2021, pages 70–79. 148

[96] Lee, S., Wi, S., and Son, S. (2022). Link: Black-box detection of cross-site scripting

vulnerabilities using reinforcement learning. In Proceedings of the ACM Web Conference

2022, pages 743–754. 105

[97] Lemos, R. (2021). Dependency problems increase for open source components. 18

[98] Lemos, R. (2024). Microsoft: Iran’s mint sandstorm apt blasts educators, researchers.

110

[99] Li, B., Vadrevu, P., Lee, K. H., Perdisci, R., Liu, J., Rahbarinia, B., Li, K., and

Antonakakis, M. (2018). Jsgraph: Enabling reconstruction of web attacks via efficient

tracking of live in-browser javascript executions. In NDSS. 122, 132

[100] Li, L., Pal, B., Ali, J., Sullivan, N., Chatterjee, R., and Ristenpart, T. (2019). Protocols

for checking compromised credentials. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, pages 1387–1403. 129

[101] Li, Z., Han, W., and Xu, W. (2014a). A large-scale empirical analysis of chinese web

passwords. In 23rd USENIX Security Symposium (USENIX Security 14), pages 559–574,

San Diego, CA. USENIX Association. 27, 43, 50, 179, 182

[102] Li, Z., He, W., Akhawe, D., and Song, D. (2014b). The emperor’s new password manager:

Security analysis of web-based password managers. In USENIX Security Symposium, pages

465–479. 20, 21, 81

[103] Liu, Y., Zhang, M., Li, D., Jee, K., Li, Z., Wu, Z., Rhee, J., and Mittal, P. (2018).

Towards a timely causality analysis for enterprise security. In NDSS. 24

165

[104] Lyastani, S. G., Schilling, M., Fahl, S., Backes, M., and Bugiel, S. (2018). Better

managed than memorized? studying the impact of managers on password strength and

reuse. In Proceedings of the 28th USENIX Security Symposium, pages 203–220. USENIX.

20, 26, 59

[105] Lyastani, S. G., Schilling, M., Neumayr, M., Backes, M., and Bugiel, S. (2020). Is

FIDO2 the kingslayer of user authentication? a comparative usability study of FIDO2

passwordless authentication. In 2020 IEEE Symposium on Security and Privacy (SP),

pages 268–285. IEEE. 22

[106] Margo, D. W. and Seltzer, M. I. (2009). The case for browser provenance. In Workshop

on the Theory and Practice of Provenance. 24

[107] Mayer, P., Kirchner, J., and Volkamer, M. (2017). A second look at password

composition policies in the wild: Comparing samples from 2010 and 2016. In Thirteenth

Symposium on Usable Privacy and Security (SOUPS 2017), pages 13–28, Santa Clara, CA.

USENIX Association. 16, 27, 28, 42, 43, 56

[108] Mayer, P., Munyendo, C. W., Mazurek, M. L., and Aviv, A. J. (2022). Why users

(don’t) use password managers at a large educational institution. In 31st USENIX Security

Symposium (USENIX Security 22), pages 1849–1866. 1

[109] Meadows, I. (2020). Add password restriction attributes. https://discourse.wicg.

io/t/add-password-restriction-attributes-to-input-type-password/4767. 15,

55

[110] Milajerdi, S. M., Gjomemo, R., Eshete, B., Sekar, R., and Venkatakrishnan, V. (2019).

Holmes: real-time apt detection through correlation of suspicious information flows. In

2019 IEEE Symposium on Security and Privacy (SP), pages 1137–1152. IEEE. 24

[111] MozDevNet (2024a). Htmldataelement: Value property web apis: Mdn. https:

//developer.mozilla.org/en-US/docs/Web/API/HTMLDataElement/value. 141

[112] MozDevNet (2024b). Webrequest - mozilla: Mdn. https://developer.mozilla.org/

en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest. 93

166

https://discourse.wicg.io/t/add-password-restriction-attributes-to-input-type-password/4767
https://discourse.wicg.io/t/add-password-restriction-attributes-to-input-type-password/4767
https://developer.mozilla.org/en-US/docs/Web/API/HTMLDataElement/value
https://developer.mozilla.org/en-US/docs/Web/API/HTMLDataElement/value
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest

[113] MozDevNet, M. (2024c). What are browser developer tools? - learn web development:

Mdn. 107

[114] Mozilla (2017). 1376155 - webrequest: Support modifying request bodies (e.g. via

requestbody blockingresponse). https://bugzilla.mozilla.org/show_bug.cgi?id=

1376155. Accessed: 2023-05-03. 65, 76

[115] Mozilla (2023). Using shadow dom. https://developer.mozilla.org/en-US/docs/

Web/API/Web_components/Using_shadow_DOM. Accessed: 2023-05-04. 72

[116] Mozilla (2024). Httpbasechannel.cpp - mozsearch. https://searchfox.org/

mozilla-central/source/netwerk/protocol/http/HttpBaseChannel.cpp. 85

[117] Mozilla Developer Network (2024). Browser extensions - mdn web docs. https:

//developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions. Accessed:

2024-03-30. 14

[118] Naiakshina, A., Danilova, A., Gerlitz, E., and Smith, M. (2020). On conducting security

developer studies with cs students: Examining a password-storage study with cs students,

freelancers, and company developers. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems, pages 1–13. 39

[119] Naiakshina, A., Danilova, A., Gerlitz, E., Von Zezschwitz, E., and Smith, M. (2019).

" if you want, i can store the encrypted password" a password-storage field study with

freelance developers. In Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems, pages 1–12. 39

[120] Nelson, N. (2023). Iran apt targets the mediterranean with watering-hole attacks. 110

[121] Oesch, S., Abu-Salma, R., Diallo, O., Krämer, J., Simmons, J., Wu, J., and Ruoti, S.

(2020). Understanding user perceptions of security and privacy for group chat: a survey of

users in the US and UK. In Proceedings of the 36th Annual Computer Security Applications

Conference. ACM. 118

167

https://bugzilla.mozilla.org/show_bug.cgi?id=1376155
https://bugzilla.mozilla.org/show_bug.cgi?id=1376155
https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_shadow_DOM
https://searchfox.org/mozilla-central/source/netwerk/protocol/http/HttpBaseChannel.cpp
https://searchfox.org/mozilla-central/source/netwerk/protocol/http/HttpBaseChannel.cpp
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions

[122] Oesch, S., Gautam, A., and Ruoti, S. (2021). The emperor’s new autofill framework:

a security analysis of autofill on iOS and Android. In Proceedings of the 37th Annual

Computer Security Applications Conference. ACM. 19, 20, 21, 69, 81, 82, 83

[123] Oesch, S. and Ruoti, S. (2020a). That was then, this is now: A security evaluation of

password generation, storage, and autofill in browser-based password managers. In 29th

USENIX Security Symposium (USENIX Security 20), Boston, MA. USENIX Association.

19, 20, 21, 59, 67, 69, 74, 81, 82, 84

[124] Oesch, S. and Ruoti, S. (2020b). That was then, this is now: A security evaluation

of password generation, storage, and autofill in browser-based password managers. In

USENIX Security Symposium. 36, 48, 57, 145

[125] Oesch, S., Ruoti, S., Simmons, J., and Gautam, A. (2022). “it basically started using

me:” An observational study of password manager usage. In Proceedings of the 40th ACM

CHI Conference on Human Factors in Computing Systems. ACM. 20, 21, 59, 118

[126] Oesch, T. (2021). An Analysis of Modern Password Manager Security and Usage on

Desktop and Mobile Devices. PhD thesis, The University of Tennessee. 26

[127] O’Flynn, C. (2019). MIN()imum failure:EMFI attacks against USB stacks. In 13th

USENIX Workshop on Offensive Technologies (WOOT 19). 22

[128] O’Gorman, L. (2003). Comparing passwords, tokens, and biometrics for user

authentication. Proceedings of the IEEE, 91(12):2021–2040. 6

[129] Ohm, M., Plate, H., Sykosch, A., and Meier, M. (2020). Backstabber’s knife collection:

A review of open source software supply chain attacks. In Detection of Intrusions and

Malware, and Vulnerability Assessment: 17th International Conference, DIMVA 2020,

Lisbon, Portugal, June 24–26, 2020, Proceedings 17, pages 23–43. Springer. 18, 59, 105

[130] O’Neill, M., Ruoti, S., Seamons, K., and Zappala, D. (2016). Tls proxies: Friend or

foe? In Proceedings of the 2016 Internet Measurement Conference, pages 551–557. ACM,

ACM. 17, 68

168

[131] OSITCOM (2021). Google removes 500 plus malicious chrome extensions. https:

//www.ositcom.com/61. Accessed: 2023-05-03. 19, 93

[132] OWASP (2021). Password special characters. https://owasp.org/www-community/

password-special-characters. Accessed: 2021-05-01. 14, 29, 105, 149

[133] OWASP (2022). Cross site scripting (xss). https://owasp.org/www-community/

attacks/xss/. Accessed: 2023-05-03. 18

[134] Paccagnella, R., Datta, P., Hassan, W. U., Bates, A., Fletcher, C., Miller, A., and Tian,

D. (2020). Custos: Practical tamper-evident auditing of operating systems using trusted

execution. In Network and distributed system security symposium. 24

[135] Paladi, N. and Karlsson, L. (2017). Safeguarding vnf credentials with Intel SGX. In

Proceedings of the SIGCOMM Posters and Demos, pages 144–146. 23

[136] Panos, C., Malliaros, S., Ntantogian, C., Panou, A., and Xenakis, C. (2017). A security

evaluation of FIDO’s UAF protocol in mobile and embedded devices. In International

Tyrrhenian Workshop on Digital Communication, pages 127–142. Springer. 21

[137] Pantelaios, N., Nikiforakis, N., and Kapravelos, A. (2020). You’ve changed: Detecting

malicious browser extensions through their update deltas. In Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security, pages 477–491. 59, 105

[138] Pearman, S., Thomas, J., Naeini, P. E., Habib, H., Bauer, L., Christin, N., Cranor,

L. F., Egelman, S., and Forget, A. (2017). Let’s go in for a closer look: Observing passwords

in their natural habitat. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 295–310. ACM. 26

[139] Pearman, S., Zhang, S. A., Bauer, L., Christin, N., and Cranor, L. F. (2019a). Why

people don’t use password managers effectively. In Proceedings of the 15th Symposium On

Usable Privacy and Security. USENIX. 1, 59

[140] Pearman, S., Zhang, S. A., Bauer, L., Christin, N., and Cranor, L. F. (2019b). Why

people (don’t) use password managers effectively. In Fifteenth Symposium On Usable

169

https://www.ositcom.com/61
https://www.ositcom.com/61
https://owasp.org/www-community/password-special-characters
https://owasp.org/www-community/password-special-characters
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/

Privacy and Security (SOUPS 2019). USENIX Association, Santa Clara, CA, pages

319–338. 26

[141] Pereira, O., Rochet, F., and Wiedling, C. (2017). Formal analysis of the FIDO 1. x

protocol. In International Symposium on Foundations and Practice of Security, pages

68–82. Springer. 21

[142] Popov, A., Nystroem, M., Balfanz, D., and Hodges, J. (2018). The token binding

protocol version 1.0. RFC 8471, RFC Editor. 68, 119, 120

[143] Proctor, R. W., Lien, M.-C., Vu, K.-P. L., Schultz, E. E., and Salvendy, G. (2002).

Improving computer security for authentication of users: Influence of proactive password

restrictions. Behavior Research Methods, Instruments, & Computers, 34(2):163–169. 16

[144] Ray, H., Wolf, F., Kuber, R., and Aviv, A. J. (2021). Why older adults (don’t) use

password managers. In Proceedings of the 30th USENIX Security Symposium. USENIX. 1

[145] Rijswijk-Deij, R. v. and Poll, E. (2013). Using trusted execution environments in

two-factor authentication: comparing approaches. Open Identity Summit 2013. 23

[146] Riley, S. (2006). Password security: What users know and what they actually do.

Usability News, 8(1):2833–2836. 26

[147] Rodríguez, G. E., Torres, J. G., Flores, P., and Benavides, D. E. (2020). Cross-site

scripting (xss) attacks and mitigation: A survey. Computer Networks, 166:106960. 105

[148] Ruoti, S., Andersen, J., Monson, T., Zappala, D., and Seamons, K. (2016).

Messageguard: A browser-based platform for usable, content-based encryption research. 88

[149] Sauro, J. and Lewis, J. R. (2016). Quantifying the user experience: Practical statistics

for user research. Morgan Kaufmann. 37, 39, 41

[150] Security, H. N. (2021). Why xss is still an xxl issue in 2021. 59, 105

[151] Seiler-Hwang, S., Arias-Cabarcos, P., Marin, A., Almenares, F., Diaz-Sanchez, D., and

Becker, C. (2019a). "i don’t see why i would ever want to use it" analyzing the usability

170

of popular smartphone password managers. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, pages 1937–1953. 1

[152] Seiler-Hwang, S., Arias-Cabarcos, P., Marín, A., Almenares, F., Díaz-Sánchez, D., and

Becker, C. (2019b). “I don’t see why i would ever want to use it:” Analyzing the usability

of popular smartphone password managers. In Proceedings of the 26th ACM SIGSAC

Conference on Computer and Communications Security. ACM. 20

[153] Senol, A., Acar, G., Humbert, M., and Borgesius, F. Z. (2022). Leaky forms: A study

of email and password exfiltration before form submission. In 31st USENIX Security

Symposium (USENIX Security 22), pages 1813–1830. 17, 59, 67

[154] Shah, Y., Choyi, V., and Subramanian, L. (2015). Multi-factor authentication as a

service. In 2015 3rd IEEE International Conference on Mobile Cloud Computing, Services,

and Engineering, pages 144–150. IEEE. 23

[155] Shay, R., Komanduri, S., Durity, A. L., Huh, P., Mazurek, M. L., Segreti, S. M., Ur,

B., Bauer, L., Christin, N., and Cranor, L. F. (2014). Can long passwords be secure

and usable? In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 2927–2936. 16, 53

[156] Shay, R., Komanduri, S., Durity, A. L., Huh, P., Mazurek, M. L., Segreti, S. M., Ur,

B., Bauer, L., Christin, N., and Cranor, L. F. (2016). Designing password policies for

strength and usability. ACM Transactions on Information and System Security (TISSEC),

18(4):1–34. 16, 53

[157] Silver, D., Jana, S., Boneh, D., Chen, E. Y., and Jackson, C. (2014). Password managers:

Attacks and defenses. In USENIX Security Symposium, pages 449–464. 20, 21, 67, 81

[158] Simmons, J., Diallo, O., Oesch, S., and Ruoti, S. (2021). Systematization of password

manager use cases and design paradigms. In Proceedings of the 37th Annual Computer

Security Applications Conference. ACM. 20, 21, 59

[159] Steffens, M., Rossow, C., Johns, M., and Stock, B. (2019). Don’t trust the locals:

Investigating the prevalence of persistent client-side cross-site scripting in the wild. 105

171

[160] Stock, B. and Johns, M. (2014). Protecting users against xss-based password manager

abuse. In Proceedings of the 9th ACM symposium on Information, computer and

communications security, pages 183–194. ACM. 3, 20, 21, 22, 60, 61, 62, 67, 72, 76,

81, 105

[161] Ulqinaku, E., Assal, H., AbdelRahman, A., Chiasson, S., and Capkun, S. (2021). Is

real-time phishing eliminated with fido? social engineering downgrade attacks against fido

protocols. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21),

pages 3811–3828. USENIX Association. 79

[162] Ur, B., Noma, F., Bees, J., Segreti, S. M., Shay, R., Bauer, L., Christin, N., and Cranor,

L. F. (2015). ‘I added ‘ !’ at the end to make it secure’: Observing Password Creation in

the Lab. In Proceedings of the Eleventh Symposium On Usable Privacy and Security. 26,

118

[163] Vu, K.-P. L., Proctor, R. W., Bhargav-Spantzel, A., Tai, B.-L. B., Cook, J., and Schultz,

E. E. (2007). Improving password security and memorability to protect personal and

organizational information. International Journal of Human-Computer Studies, 65(8):744–

757. 16

[164] Wang, D., Wang, P., He, D., and Tian, Y. (2019). Birthday, name and bifacial-security:

understanding passwords of chinese web users. In 28th USENIX Security Symposium

(USENIX Security 19), pages 1537–1555. 27, 43, 50, 182

[165] Wang, K. C. and Reiter, M. K. (2018). How to end password reuse on the web. arXiv

preprint arXiv:1805.00566. 26

[166] Wang, K. C. and Reiter, M. K. (2021). Using amnesia to detect credential database

breaches. In 30th USENIX Security Symposium (USENIX Security 21), pages 839–855. 23,

24, 117

[167] Wang, Q., Hassan, W. U., Bates, A., and Gunter, C. (2018). Fear and logging in the

internet of things. In Network and Distributed Systems Symposium. 24

172

[168] Wang, R., Peng, Y., Sun, Y., Zhang, X., Wan, H., and Zhao, X. (2023). Tesec: Accurate

server-side attack investigation for web applications. In 2023 IEEE Symposium on Security

and Privacy (SP), pages 2799–2816. IEEE. 122

[169] WHATWG (2023). Web idl. https://webidl.spec.whatwg.org/. 78

[170] WhiteSource (2022). Remediating vulnerabilities in npm packages - whitesource. 18

[171] Will, N. C. and Maziero, C. A. (2020). Using a shared SGX enclave in the UNIX

PAM authentication service. In Proceedings of the 14th Annual International Systems

Conference, Montreal, QC, Canadá. IEEE. 23

[172] Wu, T. et al. (1998). The secure remote password protocol. In Internet Society

Symposium on Network and Distributed System Security, volume 98, pages 97–111. Citeseer.

71

[173] Yadav, T. K. and Seamons, K. (2024). A security and usability analysis of local attacks

against fido2. In Network and Distributed Systems Security (NDSS) Symposium, San Diego,

CA, USA. 91, 92, 94, 105

[174] Yang, R., Ma, S., Xu, H., Zhang, X., and Chen, Y. (2020). Uiscope: Accurate,

instrumentation-free, and visible attack investigation for gui applications. In NDSS. 24

[175] Yu, D., Chander, A., Islam, N., and Serikov, I. (2007). Javascript instrumentation for

browser security. ACM SIGPLAN Notices, 42(1):237–249. 25

[176] Yubico (2024). Java webauthn server. "https://github.com/Yubico/

java-webauthn-server". 103

[177] Zhang, Y., Zhao, S., Qin, Y., Yang, B., and Feng, D. (2015). Trusttokenf: A generic

security framework for mobile two-factor authentication using trustzone. In 2015 IEEE

Trustcom/BigDataSE/ISPA, volume 1, pages 41–48. IEEE. 23

[178] Zhao, J., Goble, C., Stevens, R., and Bechhofer, S. (2004). Semantically linking and

browsing provenance logs for e-science. In Semantics of a Networked World. Semantics for

173

https://webidl.spec.whatwg.org/
"https://github.com/Yubico/java-webauthn-server"
"https://github.com/Yubico/java-webauthn-server"

Grid Databases: First International IFIP Conference, ICSNW 2004, Paris, France, June

17-19, 2004, Revised Selected Papers, pages 158–176. Springer. 24

[179] Zipperle, M., Gottwalt, F., Chang, E., and Dillon, T. (2022). Provenance-based intrusion

detection systems: A survey. ACM Computing Surveys, 55(7):1–36. 24

174

Appendices

A Study Instrument For Password Policy Authoring

Setup For this study, you will be using a python library we developed. Please install

this library using pip: python3 -m pip install –user –upgrade password-policy. If

for some reason, you don’t have pip installed, you can install it using: python3 -m ensurepip

–user –upgrade.

After installation is complete, check that everything is working correctly by copying

and pasting the following command into your terminal. Enter the resulting output below:

python3 -c "import password_policy; print(password_policy.__version__)".

Q1. Enter version

Demographics
Q2.1. What is your class standing?

◦ Junior ◦ Senior ◦ MS student ◦ PhD student

Q2.2. What is your major?

◦ Computer Science ◦ Computer Engineering ◦ Electrical Engineering ◦ other [Enter here]

Q2.3. What is your sex?

◦ Male ◦ Female ◦ Non-binary ◦ Prefer not to answer

Tasks Different websites have different requirements for passwords. For example, some

websites may require passwords to have a minimum length, include certain types of characters,

and avoid using other characters. In our research group, we are studying a system for

describing password policies using JSON. We are also studying libraries that can be used to

construct these JSON policy descriptions and validate passwords based on these descriptions.

175

In this study, you will use this system and a python library to encode several password

policies. Our goal is to understand how usable this system and library is.

To help you learn about this system and the python library you installed, please click

[this link to view the relevant documentation]. You will be using the knowledge from this

documentation for the rest of the study. Feel free to refer to it throughout the study. A link

to this documentation will always be available on the pages describing your tasks for this

study.

When you feel ready to use this system, click continue to be given your first task.

The following questions were the same for each policy, except for the policy requirements. We

give the full text for Policy 1’s questions, and only the policy requirements for Policy 2–5.

Q3.1.1. Using the python library, please write a policy description for the following password

policy. When finished, encode it in JSON and enter it into the text field below. We will

validate the entered policy description to make sure it is correct. You may also directly write

the policy as JSON (not using the library) if desired.

Password policy:

• The password must be at least 8 characters long

[Documentation link]

Q3.1.2. Did you manually write the JSON policy description, or did you generate it using

the python library?

◦ Generated it using Python library ◦ Manually entered the JSON policy

Q3.1.3. Based on your experience authoring the JSON policy description, indicate to what

extent you agree with the following statements. Options:Strongly disagree-1..Strongly agree-7

◦ Overall, I am satisfied with the ease of completing this task. ◦ Overall, I am satisfied with

the amount of time it took to complete this task. ◦ Overall, I am satisfied with the support

information (on-line help, messages, documentation) when completing this task.

176

Q3.2.1. Password policy:

• The password must be at least 8 characters long

• The password must contain characters from at least two of the following: uppercase

letters, lowercase letters, numbers, symbols

Q3.3.1. Password policy:

• The password must be at least 12 characters long

• The password must contain at least one letter and one number

• The password must NOT contain space

Q3.4.1. Password policy:

• The password must satisfy one OR the other of the following policies:

– The password must be at at least 8 characters long

– The password must contain at least one letter and one number

• OR

– The password must be at least 15 characters long

Q3.5.1. Password policy:

• The password must be at least 8 characters long

• The password must contain at least two symbols

• The password must contain at least one uppercase letter and one lowercase letter

• The password must NOT contain space, the carrot symbol (ˆ), quotes (’), double

quotes ("), semicolons (;), slashes (/), or backslashes (\).

• The password must NOT contain the substring "mywebsite"

177

Post-Study Questionnaire That was the last policy you will need to write for this study.

We will now ask you a few questions about your experience the password policy description

system and python library.

Q4.1. Please answer the following question about your experience. Try to give your

immediate reaction to each statement without pausing to think for a long time. Mark the

middle column if you don’t have a response to a particular statement.

Options: Strongly Disagree, Disagree, Neither Agree nor Disagree, Agree, Strong Agree

1. I think that I would like to use this system frequently

2. I found the system unnecessarily complex

3. I thought the system was easy to use

4. I think that I would need the support of a technical person to be able to use this system

5. I found the various functions in this system were well integrated

6. I thought there was too much inconsistency in this system

7. I would imagine that most people would learn to use this system very quickly

8. I found the system very cumbersome to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this system

Q4.2. What did you like the most about the system and library?

Q4.3. What did you like the least about the system and library?

Q4.4. Is there any other feedback you would like us to know about the system or library?

178

B PCP Strength Calculations

We measure the strength of password composition policies (PCPs) by estimating how many

passwords exist that (a) satisfy the PCP and (b) are of the shortest possible length. We then

divide this number by two to estimate the average number of guesses an adversary needs to

find a user’s passwords. This approach gives an exact estimate of strength when passwords

are generated entirely at random. To estimate strength for human-generated passwords, we

allow our strength estimates to be parameterized by what character classes are preferred [101].

B.1 Algorithm

Step 1—Preprocessing First, we filter the rules and only consider those that have the

smallest min_length (there may be multiple). Next, we simplify require_subset, creating

a new rule with require set for each possible combination of the listed options of length

count. Lastly, we simplify the shortcut rules require, setting min_require for each charset

listed in the requirement.

Step 2—Enumerating Password Compositions In this step, we enumerate all possible

password compositions for the rules identified in Step 1. A password composition is simply a

list specifying how many characters from each character class are used to make up a password.

For example, for a PCP that (a) only allows lowercase letters and digits and (b) has a rule that

sets min_length to 2 (but no other requirements), there are three password compositions:

(1) two lowercase letters, (2) two digits, (3) one lowercase letter and one digit. Note, we only

consider compositions where the sum of character counts equals min_length.

We take the following steps to derive the password compositions for a rule. First, we

create a password composition with values set based on min_required for each charset. We

also calculate required_chars, which tracks the total number of required characters (sum

of the calculated password composition). Second, we create a list of length min_length−

required_chars. At each index i (one-indexed) of this new list, we include a list of which

character classes could appear i more times in the password composition without violating

max_allowed for each charset (if set). Third, we calculate the full factorial combination of

179

items in this list of lists. For each such combination, we create a new password composition

that takes the original password combination and adds the character classes in the combination.

For each composition, we also store any restrictions related to that composition that may not

yet have been handled (e.g., max_consecutive).

For example, consider a policy with min_length set to 3, which requires the alphabet

character set to be used once and has at most one digit. Our initial password composition

would be [1,0,0] representing 1 alphabet character, 0 digits, and 0 symbols;

required_characters would be 1. Our list of lists would be

[[alphabet,digit,symbol], [alphabet,symbol]]. In total, there are six (3 ∗ 2) possible

combinations of this list, which after added to initial password composition result give the

following password compositions:

[[3,0,0], [2,0,1], [2,1,0], [1,1,1], [2,0,1], [1,0,2]].

This method will not result in overlapping compositions within a given rule but can

between rules. If this occurs, duplicate compositions are trimmed.

Step 3—Calculating Combinations and Permutations For each composition, we

will calculate the number of passwords (i.e., size of the search space) represented by each

composition that also satisfy the PCP. As a password only maps to a single composition, the

sum of search space sizes for each composition is the size of the overall password search space.

For each composition, we take the following steps to calculate its search space size:

We start by calculating the number of combinations of characters from the charsets that

make up the composition:

∏
i

charset_size
composition

i
i (1)

We then multiply this value by the number of unique permutations in the composition:

(
∑

i compositioni)!∏
i(compositioni!)

(2)

180

If there are no additional requirements to be considered, this value is used as the

composition’s search space size. If there are additional requirements, we will reduce this

calculated by value by the number of passwords removed by each requirement.

First, we consider the required_locations requirement. If used, we recalculate our

baseline using the same calculations above, except that we reduce the permutation calculation

to only consider character classes not at fixed positions due to required_locations.

For the remaining four requirements, we take an approach wherein we create one or

more invalid compositions that violate the requirement, calculate the search space for the

invalid composition, and subtract the invalid composition’s search space size from the overall

composition’s search space size (calculated above). We continue doing so until there are no

more requirements to handle. We generate these invalid compositions as follows:

• For max_consecutive, we identify all charsets which have enough occurrences in the

composition to violate this rule. For each of these charsets, we create a new, invalid

composition that removes (max_consecutive + 1) occurrences from matched charset

and adds a single occurrence of a new charset of size equal to the matched charset

(representing the repeated character).

• For max_consecutive in charset_restrictions, we do much the same as above,

except that the size of the new charset in the invalid compositions will equal

matched_charset_sizemax_consecutive+1, representing all possible combinations of

the charset.

• For each substring in prohibited_substrings, we create a new, invalid composition

that removes the appropriate charset for each character in the substring. We then

append a charset of size 1 to the composition, representing the prohibited string.

• For each location in prohibited_location, we do not modify the current composition

but instead calculate its search space as if the prohibited location were required.

181

B.2 Estimating Human-Generation

Prior research has shown that when generating passwords, humans prefer characters from

specific character classes, though this preference can differ based on country [101, 164]. Our

PCP strength estimation can be parameterized based on what character classes users prefer

to represent this behavior. For example, American users’ preferences might be lowercase,

uppercase, then digits [101]. For Chinese users, their preferences are more likely to be digits,

lowercase, then uppercase [101, 164].

We handle these preferences in Step 2 of our calculations. We initially execute step two

as described up through calculating the list of lists representing characters that can occur

in the remaining spots of the initially calculated password composition. For each sublist of

charsets, we check to see if any of those charsets appears in the list of preferred charsets. If

one or more do, we replace the sublist with a new list with a single element matching the

highest-ranked matching charsets. After this modification, calculations proceed as described.

Note, these preference-based calculations are Fermi approximations, underestimating

character class diversity in user passwords and overestimating diversity of character selection

within a character class, with the two errors hopefully canceling out. Even though these are

not exact estimates for human-generated passwords, they are sufficient to help administrators

and researchers estimate the overall strengths and weaknesses of a PCP.

B.3 Limitations

For PCPs that do not use any of the final four requirements discussed in Step 3, our method

precisely calculates the PCP’s search space. Our calculation is also correct if only a single one

of these requirements are used for a composition. Of the 270 PCPs in our dataset, 260 do not

use any of the five requirements, and of the ten that do, each uses only a single requirements.

This means that calculations used in our analysis are all precise, and it suggests that most

PCPs will have their search space calculated precisely.

Still, more complicated PCPs that use multiple of the five requirements could have their

search spaces underestimated. This occurs because these requirements have the possibility of

removing the same passwords. To our knowledge, the only way to prevent this would be to

182

enumerate the password combinations and permutations–as we did with compositions—but

this is not tractable for any meaningful length of passwords. However, as the reduction to the

search space for each of these requirements will generally be small compared to the overall

size of the composition’s search space, we believe that the underestimates should be minimal.

Additionally, in terms of strength estimates, underestimates are safer than overestimates.

C Webpages Accessible with HTTP

The following is the list of website for which we were able to access the account creation or

login page using HTTP:

183

Website Country Popularity Category
weibo.com China Top 50 Social
babytree.com China Top 100 Social
usatoday.com US Top 500 News
yaplakal.com Russia Top 5000 Social
ig.com.br Brazil Top 5000 Social
wikidot.com China Top 5000 Other
fb.ru Russia Top 5000 News
javlibrary.com China 5000+ Stream
dwnews.com China 5000+ News
metacafe.com India 5000+ Social
eskimi.com Nigeria 5000+ Social
ci123.com China 5000+ Stream
sinovision.net China 5000+ News
sugardaddyforme.com China 5000+ Social
mydiba.xyz Iran 5000+ Stream

Figure 1: List of websites accessible with HTTP

184

D PCP Strength By Category

100 102 104 106 108 1010 1012 1014 1016 1018 1020

PCP Strength
0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

PCP entirely random strength by country
Global
Australia
Brazil
Germany
India
Nigeria
UK
US
China
Iran
Russia

100 102 104 106 108 1010 1012 1014 1016 1018 1020

PCP Strength
0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

PCP alphabetic-first strength by country
Global
Australia
Brazil
Germany
India
Nigeria
UK
US
China
Iran
Russia

100 102 104 106 108 1010 1012 1014 1016 1018 1020

PCP Strength
0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

ge

PCP numeric-first strength by country
Global
Australia
Brazil
Germany
India
Nigeria
UK
US
China
Iran
Russia

100 101 102 103 104 105 106 107

Alexa Global Rank
100
102
104
106
108

1010
1012
1014
1016
1018
1020

PC
P

St
re

ng
th

PCP entirely random strength by Alexa global rank

100 101 102 103 104 105 106 107

Alexa Global Rank
100
102
104
106
108

1010
1012
1014
1016
1018
1020

PC
P

St
re

ng
th

PCP alphabetic-first strength by Alexa global rank

100 101 102 103 104 105 106 107

Alexa Global Rank
100
102
104
106
108

1010
1012
1014
1016
1018
1020

PC
P

St
re

ng
th

PCP numeric-first strength by Alexa global rank

100 102 104 106 108 1010 1012 1014 1016 1018 1020

PCP Strength
0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

PCP entirely random strength by use case
Ecommerce
Finance
News
Social
Software
Stream
Other

100 102 104 106 108 1010 1012 1014 1016 1018 1020

PCP Strength
0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge

PCP alphabetic-first strength by use case
Ecommerce
Finance
News
Social
Software
Stream
Other

100 102 104 106 108 1010 1012 1014 1016 1018 1020

PCP Strength
0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

ge

PCP numeric-first strength by use case
Ecommerce
Finance
News
Social
Software
Stream
Other

Figure 2: PCP strengths by for different character preference by category

185

E PCP Features by Category

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Minimum Length

0%

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge

PCP minimum length by country
Global
Australia
Brazil
Germany
India
Nigeria
UK
US
China
Iran
Russia

0 100 200 300 400 500
Maximum Length

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

PCP maximum length by country

Top 10
Top 50
Top 100
Top 500
Top 1000
Top 5000
5000+

100 101 102 103 104 105 106 107

Alexa Global Rank

2

4

6

8

10

M
in

im
um

 L
en

gt
h

PCP minimum length by Alexa global rank

100 101 102 103 104 105 106 107

Alexa Global Rank

0

100

200

300

400

500

M
ax

im
um

 L
en

gt
h

PCP minimum length by Alexa global rank

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Minimum Length

0%

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge

PCP minimum length by use case
Ecommerce
Finance
News
Social
Software
Stream
Other

0 100 200 300 400 500
Maximum Length

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

PCP maximum length by use case

Ecommerce
Finance
News
Social
Software
Stream
Other

Figure 3: PCP features by for different character preference by category

186

Vita

Born and raised in Kathmandu, Nepal, Anuj Gautam received his Bachelor’s degree in

Electronics and Communication Engineering from Tribhuvan University. He worked as a

software engineer for various companies for three years before joining University of Tennessee

at Knoxville. Anuj Gautam joined Unviersity of Tennessee at Knoxville in August 2019 for

an MS in Computer Engineering, eventually switching to pursue a PhD in Compuer Science.

187

	Enhancing security and usability in password-based web systems through standardized authentication interactions
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	2 Background and Related Works
	2.1 Authentication
	2.2 Password-based Authentication
	2.3 Attacks on Passwords
	2.3.1 Retrieval of plain text passwords
	2.3.2 Online and offline guessing attacks

	2.4 Password Managers
	2.5 Passwordless Authentication
	2.5.1 FIDO2 protocol

	2.6 Local malicious agents in the browser
	2.6.1 Cross Site Scripting (XSS)
	2.6.2 Browser Extensions

	2.7 Related Works
	2.7.1 PCP Languages
	2.7.2 Web PCP Analysis
	2.7.3 PCP Usability
	2.7.4 Browser-Based Password Exfiltration
	2.7.5 Password Managers
	2.7.6 FIDO2/WebAuthn
	2.7.7 Detecting attack on passwords
	2.7.8 Provenance based intrusion detection
	2.7.9 Browser Provenance

	3 Improving Usability of Generated Passwords
	3.1 PCP Dataset
	3.1.1 Sources
	3.1.2 Analysis
	3.1.3 Limitations

	3.2 PCP Description Language
	3.2.1 PCP Language

	3.3 PCP-Compliant Password Generation
	3.3.1 Library Implementations
	3.3.2 Website Implementation
	3.3.3 Password Manager Implementation

	3.4 Usability Study
	3.4.1 Study setup
	3.4.2 Study tasks
	3.4.3 Demographics
	3.4.4 Study Design
	3.4.5 Limitations

	3.5 Study Results
	3.5.1 Success Rates
	3.5.2 Completion Times
	3.5.3 Perceived Usability
	3.5.4 Takeaways

	3.6 Website Analysis
	3.6.1 PCP Strength
	3.6.2 PCP Features
	3.6.3 Website Analysis

	3.7 Discussion
	3.7.1 PCP Recommendations
	3.7.2 NIST Guidelines

	3.8 Comparison with related works
	3.8.1 PCP Languages
	3.8.2 Web PCP Analysis
	3.8.3 PCP Usability

	3.9 Conclusion and Future Work

	4 Secure Browser Credential Entry Channel
	4.1 Background
	4.1.1 Password Entry Workflow
	4.1.2 Relation to Stock and John's Work
	4.1.3 Browser Background

	4.2 Threat Model
	4.3 Design Space Exploration
	4.3.1 Design #1: Zero-Knowledge Proof
	4.3.2 Design #2: No-Script Form Attribute
	4.3.3 Design #3–5: Nonce Injection
	4.3.4 Discussion

	4.4 Implementation
	4.4.1 Getting Setup
	4.4.2 onBeforeRequest
	4.4.3 onRequestCredential

	4.5 Evaluations
	4.5.1 Security Evaluation
	4.5.2 Functional Evaluation
	4.5.3 Overhead Evaluation

	4.6 Discussion
	4.6.1 Deployment and Adoption
	4.6.2 Securing Manual Password Entry
	4.6.3 Denial of Service for Nonce Injection
	4.6.4 User Confusion

	4.7 Conclusion

	5 Securing FIDO2 Credential Entry
	5.1 Secure Browser Channel - sbc-FIDO2
	5.1.1 Adversary model: A
	5.1.2 Design: sbc-FIDO2
	5.1.3 Security and Deployability Analysis
	5.1.4 Implementation

	5.2 Discussion
	5.2.1 Effectiveness of Defenses
	5.2.2 Deployment

	5.3 Conclusion

	6 Detecting and Auditing Password Theft
	6.1 Background
	6.1.1 General and targeted XSS attacks
	6.1.2 Browser Developer Tools
	6.1.3 Credential Swapping Mechanism

	6.2 Threat model
	6.2.1 Motivating Example

	6.3 System Design
	6.3.1 Basis of the final system
	6.3.2 Actors
	6.3.3 Process
	6.3.4 Ideal Services
	6.3.5 Utilizing a trusted third-party server

	6.4 Implementation
	6.4.1 Generation of nonce
	6.4.2 Verification of nonce
	6.4.3 Attack auditor
	6.4.4 Data from multiple users

	6.5 Evaluation
	6.5.1 Nonce verifier
	6.5.2 Attack auditor

	6.6 Discussion
	6.7 Conclusion

	7 Conclusion and Future Works
	7.1 Lessons Learned
	7.1.1 Password managers as an opportunity
	7.1.2 No standard PCP
	7.1.3 Humans generate passwords differently than machines
	7.1.4 Misdirected security concerns
	7.1.5 Need to secure against local attacks
	7.1.6 Need for provenance system in the browser

	7.2 Future Works
	7.2.1 Further improving password generation
	7.2.2 Securing manual entry of passwords
	7.2.3 Enhanced Application Support for Secure Browser Channels
	7.2.4 Usability study of security indicators
	7.2.5 Stronger threats for credentials
	7.2.6 Trusted extensions in the browser
	7.2.7 Stronger audit mechanisms

	Bibliography
	Appendices
	A Study Instrument For Password Policy Authoring
	B PCP Strength Calculations
	B.1 Algorithm
	B.2 Estimating Human-Generation
	B.3 Limitations

	C Webpages Accessible with HTTP
	D PCP Strength By Category
	E PCP Features by Category

	Vita

