
TrustBase
Repairing and Strengthening Certificate-based Authentication

Mark O’Neill, Scott Heidbrink, Scott Ruoti, Jordan Whitehead, Dan Bunker,

Luke Dickinson, Travis Hendershot, Joshua Reynolds, Kent Seamons, and Daniel Zappala



client



certificate validation problems



certificate authorities (CAs)

• generally can sign certificates for any host (Eckersley et al.)

• have been hacked, sometimes repeatedly (Marlinspike)

• can be influenced and operated by governments (Soghoian et al.)

• don’t always follow best practices (see CNNIC)



for application developers

• mobile and desktop apps have validation problems
• Brubaker et al., Georgiev et al., Onwuzurike et al., Fahl et al.

• security libraries are complicated

• security may not be a priority



threat model

client

Bad guys, Inc.



alternate and reinforcing strategies

• mitigate many of these issues

• have no common platform or API

• have difficulty being adopted



trust decisions are outsourced



how do we enable admins to control trust 
decisions for their own machines?



TrustBase

• motivating principles
• centralize authentication as an OS service

• empower system admins to dictate how trust decisions are made

• design goals
• secure all existing applications 

• prohibit unprivileged applications from acting against administrator rules

• provide easy deployment of authentication systems

• negligible overhead



API

TrustBase

Transport

Network

…
…

Application

Validation

Plugins

Prototypes for
• Linux
• Android (nonrooted)
• Windows

moving trust to the OS



TrustBase architecture



TrustBase architecture



traffic interception (Linux)

So
ck

et
 A

P
I

TC
P

 H
an

d
lin

g

connect

write
send

sendmsg
sendmmsg

read
recv

recvmsg
recvmmsg

close
shutdown

Handler API

• loadable kernel module

• hooks into native 
transport protocol 
functionality

• provides generic 
inspection/modification 
API



TrustBase architecture



TLS handler

1. monitor traffic for TLS 
records

2. record handshake 
messages

3. query policy engine with 
handshake data

4. receive policy response
1. block connection if invalid
2. allow if valid

stop tracking TLS/SSL?

start tracking

yes

no

full 
handshake?

no yes



TrustBase architecture



policy engine

• receives queries via Netlink

• implements basic CA validation

• aggregates decisions from plugins
• necessary

• voting

• provides native API
• Linux capabilities



TrustBase architecture



plugins
• API allows synchronous and asynchronous plugins

• openssl STACK_OF(X509) or ASN.1 DER

• can report back yes/no/abstain/error for each chain

• have access to all handshake info (and more)

addons
• provide additional language support for plugins

• currently have native C and python addons

• API to add additional language support



included plugins and uses

• CA validation (builtin)

• certificate pinning

• OSCP checking

• CRLSet blocking

• DANE

• notary

• cipher suite auditor



evaluation



centralization and coverage

con

• single point of failure

pro

• updates are global

• benefit of many eyes 

• TrustBase makes connection security 
an OS service, like TCP, IP



hardening

• unprivileged malware cannot 
unload interception

• CAP_NET_RAW is required to use 
raw sockets (default) and to bypass 
TrustBase interception

• CAP_NET_ADMIN required to 
receive and respond to queries

• configuration is writable only by 
privileged users

• daemons run nonroot with only 
required permissions



performance



future work

• POSIX-based secure socket API

• push all of TLS to admin/OS control

• ease developer burden further

• call TrustBase validation natively

• wouldn’t this be nice?

int socket = socket(PF_INET, SOCK_STREAM, IPPROTO_TLS);



trustbase lets you trust

who you want

how you want



Thank You

• source code: https://github.com/markoneill/trustbase-linux

• pull requests welcome!

• project website: https://owntrust.org

• contact me: mto@byu.edu

• thanks to our sponsors:

Linux Android Win10

https://github.com/markoneill/trustbase-linux
https://owntrust.org/
mailto:mto@byu.edu

