Intention-Based Development

Better development paradigms are cool


Publications

Conferences

Abstract: Developing secure software is inherently difficult, and is further hampered by a rush to market, the lack of cybersecurity-trained architects and developers, and the difficulty of identifying flaws and deploying mitigations. To address these problems, we advocate for an alternative paradigm-layering security onto applications from global control points, such as the browser, operating system, or network. This approach adds security to existing applications, relieving developers of this burden. The benefits of this paradigm are three-fold-(1) increased correctness in the implementation of security features, (2) coverage for all software, even non-maintained legacy software, and (3) more rapid and consistent deployment of threat mitigations and new security features. To demonstrate these benefits, we describe three concrete instantiations of this paradigm- MessageGuard, a system that layers end-to-end encryption in the browser; TrustBase, a system that layers authentication in the operating system; and software-defined perimeter, which layers access control at network middleboxes.
Abstract: Cloud-hosted databases have many compelling benefits, including high availability, flexible resource allocation, and resiliency to attack, but it requires that cloud tenants cede control of their data to the cloud provider. In this paper, we describe Proactively-secure Accumulo with Cryptographic Enforcement (PACE), a client-side library that cryptographically protects a tenant’s data, returning control of that data to the tenant. PACE is a drop-in replacement for Accumulo’s APIs and works with Accumulo’s row-level security model. We evaluate the performance of PACE, discussing the impact of encryption and signatures on operation throughput.
Abstract: The current state of certificate-based authentication is messy, with broken authentication in applications and proxies, along with serious flaws in the CA system. To solve these problems, we design TrustBase, an architecture that provides certificate-based authentication as an operating system service, with system administrator control over authentication policy. TrustBase transparently enforces best practices for certificate validation on all applications, while also providing a variety of authentication services to strengthen the CA system. We describe a research prototype of TrustBase for Linux, which uses a loadable kernel module to intercept traffic in the socket layer, then consults a user-space policy engine to evaluate certificate validity using a variety of plugins. We evaluate the security of TrustBase, including a threat analysis, application coverage, and hardening of the Linux prototype. We also describe prototypes of TrustBase for Android and Windows, illustrating the generality of our approach. We show that TrustBase has negligible overhead and universal compatibility with applications. We demonstrate its utility by describing eight authentication services that extend CA hardening to all applications.