A Comparison of Three Approaches to Assist Users in Memorizing System-Assigned Passwords

Michael Clark, Scott Ruoti, and Michael Mendoza Kent Seamons

Abstract
Users struggle to select strong passwords. System-assigned passwords address this problem, but they can be difficult for users to memorize. While password managers can help store system-assigned passwords, there will always be passwords that a user needs to memorize, such as their password manager's master password. As such, there is a critical need for research into helping users memorize system-assigned passwords. In this work, we compare three different designs for password memorization aids inspired by the method of loci or memory palace. Design One displays a two-dimensional scene with objects placed inside it in arbitrary (and randomized) positions, with Design Two fixing the objects' position within the scene, and Design Three displays the scene using a navigable, three-dimensional representation. In an A-B study of these designs, we find that, surprisingly, there is no statistically significant difference between the memorability of these three designs, nor that of assigning users a passphrase to memorize, which we used as the control in this study. However, we find that when perfect recall failed, our designs helped users remember a greater portion of the encoded system-assigned password than did a passphrase, a property we refer to as durability. Our results indicate that there could be room for memorization aids that incorporate fuzzy or error-correcting authentication. Similarly, our results suggest that simple (i.e., cheap to develop) designs of this nature may be just as effective as more complicated, high-fidelity (i.e., expensive to develop) designs.

Reference
Michael Clark, Scott Ruoti, and Michael Mendoza Kent Seamons. 2024. A comparison of three approaches to assist users in memorizing system-assigned passwords. In Proceedings of the 13th Symposium on Usable Security. ACM.

Downloads